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Abstract
We apply a recent model of the cloud of ballistic im-
pact ejecta surrounding an airless body [1] to the lu-
nar case. For power-law-distributed ejection speeds
[2, 3, 4], we identify regimes where the height and the
speed distribution of ejecta are approximately power-
law functions that directly depend on the exponent of
the ejection law. Likewise, key features of the distri-
bution of a particle’s speed with respect to an orbiting
spacecraft depend sensitively on the ejection zenith an-
gle. Measurements at those regimes can therefore con-
strain the ejection physics.

Introduction
Every airless body in the solar system is surrounded
by a cloud of ejecta produced by the impact of inter-
planetary meteoroids on its surface [5]. Such “dust
exospheres” have been observed around the Galilean
satellites of Jupiter [6, 7]. The prospect of long-term
robotic and human operations on the Moon by the US
and other countries has rekindled interest on the sub-
ject [8]. This interest has culminated with the recent
investigation of the Moon’s dust exosphere by NASA’s
LADEE spacecraft [9].

The most detailed models to-date [3, 4] have fo-
cused on measurements at relatively high altitudes (≥
a few tenths of a satellite radius − RS). Exploiting
new datasets requires models that focus on the low-
altitude (. 0.1RS) regime.

Model Predictions
A new model of a ballistic, collisionless, steady state
population of impact ejecta was presented in [1]. For
grains launched vertically with speed vL distributed
according to the law

p(> vL) = (vL/v0)
−γ , vL > v0 (1)
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Figure 1: Probability density function of grain impact
speed on a low-altitude lunar orbiter. See text for de-
tails.

where v0 & γ are model parameters [2, 3, 4], the
model furnishes closed-form expressions for the prob-
ability density functions (pdfs) of grain altitude p(h)
and grain speed at a given altitude p(v|h). The func-
tional forms of these pdfs show that both (a) the al-
titude distribution of grains, and (b) the grain speed
distribution near the surface, follow a power-law with
an exponent that depends on γ. The result holds even
if non-vertical ejection is imposed.

The model also treats the statistics of grain mo-
tion relative to a moving platform such as an orbiting
spacecraft. Fig. 1 shows the pdf (bold curve) of the
grain impact speed w on a platform moving horizon-
tally at a speed and altitude typical of a low-altitude
lunar orbiter: u = 1650 m sec−1 and h = 30 km. The
ejection zenith angle z has been set to 30 degrees. The
grey bars represent a snapshot of the w-statistics of 107

particles ejected with randomly-distributed speeds fol-
lowing the pdf in Eq. 1. The two-pronged shape is due
to the non-vertical ejection (i.e. z 6= 0) with the two
peaks merging into one as z → 0.
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Implications and Future Work
The raison d’être of any model is to interpret measure-
ments and understand the physical processes at work.
The model presented here is probabilistic (i.e. nor-
malised to integrate to unity) therefore verifying its
predictions does not require absolute measurements.

If a power-law ejection speed distribution is physi-
cally realistic, the model predicts that the steady state
distribution of grain altitudes in the first instance, and
that for the speeds of near-surface grains in the second,
are related to each other and to the exponent of this
power law. Future measurements from landers com-
bined with data from LADEE would therefore form a
strong observational test of Eq. 1. Moreover, accurate
orbital measurements of grain speed within the ejecta
cloud combined with models such as that in Fig. 1 can
constrain the ejection zenith angle of grains.

Future improvements to the model will include a
dependency of the ejection speed on grain size and a
probabilistic distribution of ejection angles. This will
increase its predictive power and allow to place addi-
tional constraints on the dust population.
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