

Ceres: structures from afar and near.

G.G. Kochemasov; IGEM of the Russian Academy of Sciences,
Moscow, RF, kochem.36@mail.ru

“Orbits make structures” – basic statement of the wave planetology [1-3]. Moving in non-circular keplerian orbits with periodically changing accelerations cosmic bodies are warped by inertia-gravity waves. Their lengths and amplitudes are proportional to orbiting periods or inversely proportional to orbiting frequencies. They have standing character and four crossing directions: ortho- and diagonal. An etalon is Earth with 1/365 days frequency and corresponding $\pi R/4$ tectonic granule size.

Ceres has 1/4435 days orbital frequency and 1/9.07 hours rotation frequency. To both parameters correspond tectonic granules too large and too small to be observed ($3.3\pi R$ and $\pi R/3863$). The wave modulation (division and multiplication of the higher fr. by the lower fr.) gives two side frequencies: 1/85212 and 1/965410. To them correspond tectonic granules $\pi R/38.8$ and $\pi R/440.8$ ($R=475$ km), thus about 38.4 km and 3.4 km. Now both sizes are discerned: larger granules from larger distance as ‘blobs’ at wave intersections (HST image, Fig. 1; Dawn’s distant image, Fig. 2) and small circles in strings and grids covering the whole imaged surface, Fig. 3.

Earlier the wave modulation approach was used to explain anomalies (extra craters) in the lunar crater size – frequency curve [4] and for explaining appearance and size of the saturnian storms making the “leopard skin” picture [5]. Recently, a bifurcation nature and sizes of debris on the Churyumov-Gerasimenko comet core surface were also explained by this method [6]

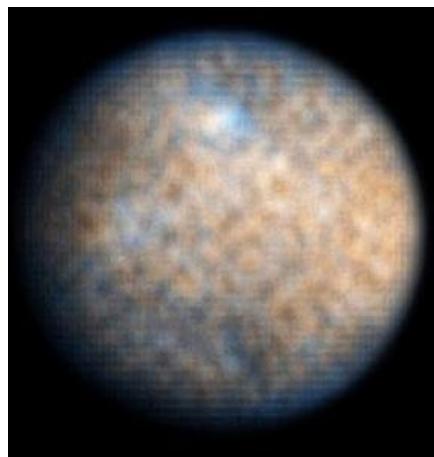


Fig.1.

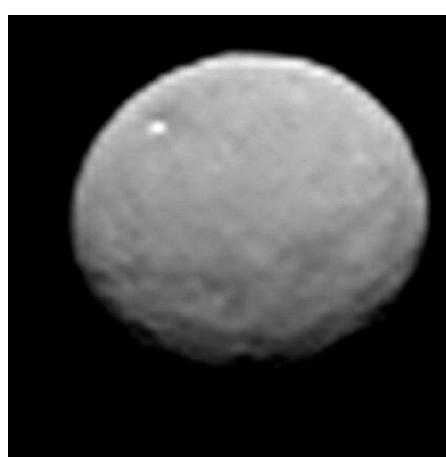


Fig.2.

Fig. 1. Color view of Ceres (HST image), PIA10235. In visible and ultraviolet light between Dec. 2003 and Jan. 2004. Diameter 950 km. Image credit: NASA/ESA/J. Parker, P. Thomas, L. McFadden, M. Mutchler & Z. Levay

Fig. 2. DAWN image of Ceres. FC21B0032726_smooth_700-237000km.jpg.

Fig. 3. A portion of Ceres from distance of 22000 km,
view_of_the_bright_spots_in_the_cra.jpg.

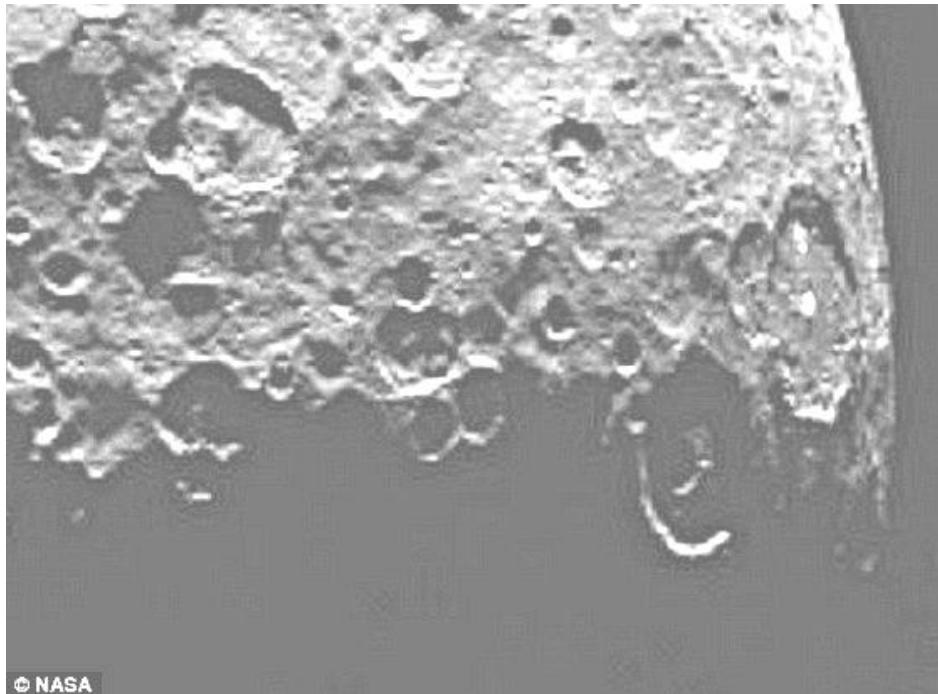


Fig. 3.

References:

- [1] Kochemasov, G.G.: Concerted wave supergranulation of the Solar system bodies, 16th Russian-American microsymposium on planetology, Moscow, Vernadsky Inst. (GEOKHI), Abstracts, 36-37, 1992.
- [2] Kochemasov, G.G.: Sectoral tectonics of the Earth's eastern hemisphere and its crucial role in localization of giant ore deposits, prominent rift systems and large flood basalt provinces, Global Tectonics and Metallogeny, V. 6, # 3 & 4, 195-197, 1998.
- [3] Kochemasov, G.G.: Tectonic dichotomy, sectoring and granulation of Earth and other celestial bodies, Proceedings of the International Symposium on New Concepts in Global Tectonics, "NCGT-98 TSUKUBA", Geological Survey of Japan, Tsukuba, Nov 20-23, 1998, p. 144-147, 1998
- [4] Kochemasov G.G. (2001) On one condition of further progress in lunar studies // First Convention of Lunar Explorers, 8th to 10th March, 2001, Palais de la Découverte, Paris, France; Programme and Contributed Abstracts; ESTEC, eds: D. Heather and B. Foing, 58 pp (p.26).
- [5] Kochemasov G.G. (2007) Calculating size of the Saturn's "Leopard Skin" spots // Lunar and Planetary Science Conference (LPSC) XXXVIII, Lunar and Planetary Inst., Houston, USA, March 2007, Abstract # 1040 (CD-ROM).
- [6] Kochemasov G.G. (2015) A wave modulation nature of the 3D structural lattice of the Churyumov-Gerasimenko comet icy core // 46th LPSC, 2015, Abstr. # 1088.

