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Abstract
A new semi-analytical method is established to cal-
culate the time-dependent solution for reorienta-
tion of co-rotating tidally deformed bodies. Com-
pared with the widely used fluid limit solution
by [Matsuyama and Nimmo (2007)], a more accurate
time-dependent reorientation path can be obtained.
We will use this method to constrain the interior vis-
cosities of Pluto based on recent discoveries from the
New Horizons mission.

1. Introduction
Many icy satellites or planets contain features which
suggest a (past) reorientation of the body, such as the
tiger stripes on Enceladus and the heart-shaped Sput-
nik Planum on Pluto. Most of these icy bodies are
tidally locked and this creates a large tidal bulge which
is about three times as large as its centrifugal (equato-
rial) bulge. To study the reorientation of such rotating
tidally deformed body is complicated and most pre-
vious studies apply the so-called fluid limit method.
The fluid limit approach ignores the viscous response
of the body and assumes that it immediately reaches
its fluid limit when simulating the reorientation due to
a changing load. As a result, this method can only
simulate cases when the change in the load is much
slower than the dominant viscous modes of the body.
For other kinds of load, for instance a Heaviside load
due to an impact which creates an instant relocation of
mass, it does not give us a prediction of how the reori-
entation is accomplished (e.g. How fast? Along which
path?). Here, we seek a dynamic solution which can
provide this answer.

2. Method
2.1 Moment of Inertia
The change in the inertia tensor for a centrifugally and
tidally deformed body is given by

∆Iij(t) =
kT (t)a5

3G
∗ [ωi(t)ωj(t)− 1

3
ω2(t)]

+
kT (t)a5

3G
∗ [ω̄i(t)ω̄j(t)− 1

3
ω̄2(t)]

+δ(t) + kL(t)] ∗ Cij(t)

(1)

where ω and ω̄ are vectors of rotation and tidal
potential, the magnitude of ω̄ is usually

√
3 times ω

for most icy moons. This equation can be solved an-
alytically by linear change assumptions or calculated
numerically with a finite-element package.

2.2 Liouville equation
With the information of the deformation, the reorien-
tation is obtained by combining the perturbation of ro-
tational and tidal axes. Both can be obtained from a
general linearized Liouville equation

m1(t) =
∆I13(t)
C −A +

C∆
.
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(2a)
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C −B −

C∆
.

I13 (t)
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(2b)

Here m1 and m2 are the perturbation in the plane per-
pendicular to the rotational and tidal axes.

2.3 An iterative procedure
An iterative algorithm which is shown in
[Hu al. (2017)] is applied in each time step:

Algorithm

1. Assume that the step i, from time ti to ti+1, starts
with the direction of the rotational axis given by
ωi
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vectors which satisfy ωi
1ω

i
4 + ωi
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i
5 + ωi

3ω
i
6 = 0.

For the first iteration, we assume that the rota-
tion and tidal axes in this step do not change:
ωi+1

r = ωi
r and ωi+1

t = ωi
t.

2. Apply both the centrifugal and tidal potential to
the model and solve the equation 1. Obtain the
total change in the inertia tensor and its deriva-
tive as ∆I and ∆İ. The coordinate transforma-
tion matrix from the body-fixed to the bulge-fixed
coordinate system is given by

U = [ωi+1
t ,ωi+1

r × ωi+1
t ,ωi+1

r ] (3)

The local values of the inertia tensor for the cen-
trifugal part are obtained by ∆I1 = UT ∆I U
and ∆İ1 = UT ∆İ U. The corresponding iner-
tia tensors for calculating tidal perturbation are
∆I2 = −ST ∆I1 S and ∆İ2 = −ST ∆İ1 S. S is
the transformation matrix between frames where
the Z-axis is the rotational axis and the tidal axis.

3. Apply equation 2 to ∆I1 and ∆İ1 and ob-
tain the perturbation for the rotational axis as
Ω1(m1,m2,m3). Apply equation 2 to ∆I2 and
∆İ2 and obtain the perturbation for the tidal axis
as Ω2(m′

1,m
′
2,m

′
3). Then we have the perturbed

Z- and X-axis as Z′ = Ω1(m1,m2, 1 + m3)T

and X′ = Ω2(1 + m′
3,m

′
2,−m′

1)T . We nor-
malize these vectors as Z′ = Ωi+1

r Z̄′ and X′ =
Ωi+1

t X̄′. The local coordinate transformation
matrix from the bulge-fixed frame at time ti to
the new frame at time ti+1 is obtained as V =
[X̄′, Z̄′×X̄′, X̄′×(Z̄′×X̄′)]. The updated direc-
tion of the rotational and tidal axes in the original
body-fixed coordinates are obtained as

ωi+1
r = Ωi+1

r UV[0, 0, 1]T (4a)

ωi+1
t = Ωi+1

t UV[1, 0, 0]T (4b)

4. Substitute ωi+1
r and ωi+1

t in step 2 until the re-
sults converge.

3. Results
We use a Triton model which contains a 10 km litho-
sphere for demonstration. For a Heaviside load, the
fluid limit solution can only provide the end posi-
tion of a reorientation. We want to demonstrate the
reorientation due to accumulated ice caps at the po-
lar area. In the following figure, a point mass is at-
tached to the surface at 15 degree colatitude and longi-
tude. The coloured dots represent the position where
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Figure 1: A view of the body in the direction of the
rotational axis where the 0 degree longitude line is the
direction of the tidal force. The reorientation of each
Heaviside type mass anomaly is calculated with time
T million years.

0

30

60

90

30 60 90

 

 

T=5 Ma
T=20 Ma
T=60 Ma
T=120 Ma
T=360 Ma
Fluid limit

Figure 2: A mass anomaly which increase from 0 to
6× 1017kg linearly in T million years.

the point mass would end as calculated by the fluid
limit solution [Matsuyama and Nimmo (2007)]. The
coloured lines are the dynamic solutions obtained by
our method which suggest a different path. Given a
reorientation end position and the history of the load-
ing, we can use our method to constrain the interior
viscosities of the model and give a more accurate re-
orientation path.
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