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Abstract

A new semi-analytical method is established to cal-
culate the true polar wander (TPW) of slowly rotat-
ing objects such as Venus. Compared with a previous
study which is based on the quasi-fluid approximation
[Spada, G. et al (1996)], a more accurate TPW path is
obtained. More importantly, our method can include
the coupling effect of the periodic (Chandler wobble)
and non-periodic (TPW) terms when the rotation of
the body is small. This effect is generally ignored for
most of planets and moons such as Earth.

1. Introduction

In the body-fixed frame where the rotational axis
aligns with the Z-axis, the linearized Liouville equa-
tion shows that the rotational perturbations in the X
and Y directions are coupled (m-coupling). This
means that in the body-fixed frame, a mass distribu-
tion imbalance in the X-Z plane would cause a ro-
tational perturbation not only in the X-Z plane but
also in the Y-Z plane. This coupling effect increases
as the rotational speed of the object decreases and
can turn TPW into a mega-wobble for objects such
as Venus which rotate very slowly. Previous studies
of TPW for this case applies the quasi-fluid approxi-
mation [Spada, G. et al (1996)] which can result in an
inaccurate TPW path. More importantly, when the
rotational speed is slow, the periodic response of the
axis which is known as Chandler wobble and the non-
periodic TPW is also coupled (p-coupling) and this ef-
fect has not been discussed yet.

2. Method

2.1 Moment of Inertia

The change in the inertia tensor for a centrifugally and
tidally deformed body is given by
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where w is the vector of centrifugal force. This
equation can be solved analytically by linear
change assumption or calculated numerically with
a finite-element package. The analytical approach
approximates the rotational axis as piecewise linear
function with which the equation 1 can be solved
analytically. The numerical approach has the potential
to include the features such as non-linear rheology or
lateral heterogeneity.

2.2 Liouville equation

With the information of the deformation, the reorien-
tation is obtained by combining the perturbation of the
rotational and tidal axes. Both can be obtained from a
general linearized Liouville equation of non-periodic
terms:
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Here m; and m; are the non-periodic and periodic per-
turbation in the X-direction, respectively.

2.3 Aniterative procedure

When the p-coupling is not considered, an iterative al-
gorithm is applied in each time step [Hu et al. (2017)]



Algorithm

1. Assume that the step ¢ starts at time ¢; with the
vector of the rotation being w? = Q% (wi, wi, wi).
and ends at time ¢;1; with the vector of the ro-
tation w’t!. For the first iteration, we assume
that the vector of the rotation does not change:
wtl = Wt

2. Obtain AI and its derivative AI by solving equa-
tion 1. With Q the coordinate transformation ma-
trix from the body-fixed coordinates to the local
coordinates where the Z-axis aligns with the di-
rection of the rotation, the inertia tensors in the
transformed coordinates are obtained by AI; =
QTAIQ and AL = QTAIQ.

3. Substitute AI; and Al into equation 2 and ob-
tain w’' = QY(my, ma, 1 + m3)T. We normal-
ize this vector as w’ = Q& where &’ is the
direction of the perturbed rotational axis in the
local coordinate system which needs to be trans-
formed back into the body-fixed frame to obtain
wtl = OH1Q &' where Q! is the same as in
the previous equation.

4. Substitute w?*! into step 2 until the result con-
verges.

3. Results

We load the Venus model with a point mass of 1 X
107 kg which is attached to the surface at 15 degree
colatitude and O longitude, the rotational speed of the
model is set to be 3 times larger than the current day
speed of Venus. We compare our method with that
of [Spada, G. et al (1996)] in figure 1. We simulate
the model with increased speed in order to show the
difference of the two methods, otherwise the results
will be indistinguishable in the plot.

We can see that the result from previous method

based on quasi-fluid approximation underestimates the
speed of the TPW and gives a different path.
When the p-coupling is also considered, the step-size
of our algorithm must be much smaller than the period
of the Chandler wobble % and equation 3 needs
to be added in the iteration.
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Figure 1: A top-down view of the body where the di-
rection of the rotation is pointing upwards. The blue
line is calculated with the quasi-fluid approximation
while the red line is from our method
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