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Abstract

We present a study of the effects of solar EUV on
positive ions and heavy negative charge carriers in
Titan’s ionosphere, including 78 flybys below 1400
km altitude between TA (Oct 2004) and T120 (June
2016). Statistically significant variations with respect
to the solar EUV flux are seen in the RPWS/LP-
measured ion charge densities (normalized by the

solar zenith angle). From solar minimum to maximum:

dayside — a factor ~2 increase, nightside — a factor ~3-
4 decrease. The overall EUV trends suggest that the
idealized Chapman theory does not apply below at
least 1200 km in Titan’s ionosphere. Nightside charge
densities also vary along Titan’s orbit, being higher in
the sunward magnetosphere of Saturn compared to the
magnetotail.

1. Introduction

Titan is the largest moon of Saturn, hosting a fully
developed atmosphere extending to almost a whole
radius above its surface [1]-[3], [4 and references
therein]. Dayside atmosphere is ionized mainly by the
solar EUV with ionization peak at ~1100 km altitude
[5]-[8]. Nightside at altitudes below 1200 km is
mainly ionized by the energetic particle flux from the
Kronian magnetosphere [9]-[11]. In-situ observations
of deep ionosphere (880 — 1000 km altitudes) have

revealed negatively charged ions/dust particles (~5 nm)
[12] with charge densities = free electrons [7], [13],
[14]. With accumulation of data by the Cassini s/c
spanning over one solar cycle, the influence of the
latter on Titan’s ionosphere is under scientific scrutiny:
solar maximum enhancement of the electron [15] and
the lighter (<100 amu) positive ion number densities
[16] have been shown. In this study we extend the
picture with the ion population, adding the heavier
positive ions and the negative ions/dust grains from
the in situ measurements by the Radio and Plasma
Wave Science (RPWS) Langmuir probe (LP) on board
the Cassini s/c.

2. Results and conclusions

The solar EUV flux has a strong impact on the ion and
dust grain charge densities: a factor ~2 correlation on
the dayside and a factor ~3-4 anti-correlation on the
nightside (from min. to max. flux, see Figure 1).
During the maximum solar activity the altitudes of the
peak charge densities decrease for the positive ions
and increases for the negative ions/dust grains,
reflecting changes of chemical production. We
conclude that a higher solar EUV flux changes the
photochemistry of the upper atmosphere (leading to
the observation of less ions on the nightside than at a
lower EUV flux) and may then have implications for



the aerosol production below the altitudes reachable
by the Cassini s/c.
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Figure 1. The positive ion number density (color-coded, log
scale), plotted in EUV flux (<80 nm, integrated) vs solar
zenith angle (SZA), showing the difference in the EUV
dependencies on the dayside (SZA<70) and the nightside
(SZA>110).

The nightside ion charge densities at ~1000 km
altitude is shown to vary along the Titan’s orbit, being
higher in the sunward magnetosphere than in the
magnetotail, consistent with enhanced particle flux
intensity from the magnetotail towards sunward
magnetosphere, detected by the ENA instrument [17].
The altitude of these variations is in agreement with
the peak ionization by the magnetospheric particle
precipitation [4], [11].
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