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Abstract 

We present a study of the effects of solar EUV on 
positive ions and heavy negative charge carriers in 
Titan’s ionosphere, including 78 flybys below 1400 
km altitude between TA (Oct 2004) and T120 (June 
2016). Statistically significant variations with respect 
to the solar EUV flux are seen in the RPWS/LP-
measured ion charge densities (normalized by the 
solar zenith angle). From solar minimum to maximum: 
dayside – a factor ~2 increase, nightside – a factor ~3-
4 decrease. The overall EUV trends suggest that the 
idealized Chapman theory does not apply below at 
least 1200 km in Titan’s ionosphere. Nightside charge 
densities also vary along Titan’s orbit, being higher in 
the sunward magnetosphere of Saturn compared to the 
magnetotail. 

1. Introduction 

Titan is the largest moon of Saturn, hosting a fully 
developed atmosphere extending to almost a whole 
radius above its surface [1]–[3], [4 and references 
therein]. Dayside atmosphere is ionized mainly by the 
solar EUV with ionization peak at ~1100 km altitude 
[5]–[8]. Nightside at altitudes below 1200 km is 
mainly ionized by the energetic particle flux from the 
Kronian magnetosphere [9]–[11]. In-situ observations 
of deep ionosphere (880 – 1000 km altitudes) have 

revealed negatively charged ions/dust particles (~5 nm) 
[12] with charge densities ≳ free electrons [7], [13], 
[14]. With accumulation of data by the Cassini s/c 
spanning over one solar cycle, the influence of the 
latter on Titan’s ionosphere is under scientific scrutiny: 
solar maximum enhancement of the electron [15] and 
the lighter (<100 amu) positive ion number densities 
[16] have been shown. In this study we extend the 
picture with the ion population, adding the heavier 
positive ions and the negative ions/dust grains from 
the in situ measurements by the Radio and Plasma 
Wave Science (RPWS) Langmuir probe (LP) on board 
the Cassini s/c. 

2. Results and conclusions 

The solar EUV flux has a strong impact on the ion and 
dust grain charge densities: a factor ~2 correlation on 
the dayside and a factor ~3-4 anti-correlation on the 
nightside (from min. to max. flux, see Figure 1). 
During the maximum solar activity the altitudes of the 
peak charge densities decrease for the positive ions 
and increases for the negative ions/dust grains, 
reflecting changes of chemical production. We 
conclude that a higher solar EUV flux changes the 
photochemistry of the upper atmosphere (leading to 
the observation of less ions on the nightside than at a 
lower EUV flux) and may then have implications for 
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the aerosol production below the altitudes reachable 
by the Cassini s/c. 

 

Figure 1. The positive ion number density (color-coded, log 
scale), plotted in EUV flux (<80 nm, integrated) vs solar 
zenith angle (SZA), showing the difference in the EUV 
dependencies on the dayside (SZA<70) and the nightside 
(SZA>110). 

The nightside ion charge densities at ~1000 km 
altitude is shown to vary along the Titan’s orbit, being 
higher in the sunward magnetosphere than in the 
magnetotail, consistent with enhanced particle flux 
intensity from the magnetotail towards sunward 
magnetosphere, detected by the ENA instrument [17]. 
The altitude of these variations is in agreement with 
the peak ionization by the magnetospheric particle 
precipitation [4], [11]. 
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