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Abstract
1. Introduction

One of the greatest successes of the Einstein’s General
Theory of Relativity (GR) was the correct prediction
[5] of the precession of perihelion of Mercury. The
closed form expression [18] to compute this preces-
sion tells us that substantial GR precession would oc-
cur only if the bodies have a combination of both mod-
erately small perihelion distance and moderately small
semi-major axis [13].

Minimum Orbit Intersection Distance (MOID) is
a quantity in celestial mechanics which helps us to
understand the closest proximity of two orbits in
space[15]. Hence evaluating MOID is crucial to un-
derstand close encounters and collision possibilities
better[16]. In this work, we look at the possible sce-
narios where a small GR precession in argument of
pericentre can create substantial changes in MOID for
small bodies ranging from meteoroids, comets and as-
teroids and thereby leading to changes in close en-
counter and impact scenarios.

2. Methods and Techniques

Previous works have looked into neat analytical tech-
niques [15] [16] to understand different collision sce-
narios and we use those standard expressions to com-
pute MOID analytically. We find the nature of this
mathematical function is such that a relatively small
GR precession can lead to drastic changes in MOID
values depending on the initial value of argument of
pericentre. These cases are analysed for various ex-
amples of asteroids, comets and meteoroid stream par-
ticles. Past works [1][2][4][81[9]1[14][17]1[19] have
looked into various interesting encounter geometries
and impact cases on Earth and other planets from
different classes of small body population. Recent

works[6][7][10][12][13] have shows that GR effects
can play an important role in the evolution of small
bodies in solar system as well as exoplanetary systems.

Numerical integrations were done with package
MERCURY [3] incorporating the GR code to look at
the nature of their orbital evolution and double check
the same effects. Numerical approach showed the
same interesting relationship (as shown by analytical
theory) between values of argument of pericentre and
the peaks or dips in MOID values. There is an over-
all agreement between both analytical and numerical
methods in understanding the pattern of MOID evolu-
tion for asteroids, comets and meteoroid stream par-
ticles which undergo measurable GR precession. Or-
bital elements are taken from IAU-Minor Planet Cen-
ter, JPL-Horizons, Cometary Catalogue [11] and IAU-
Meteor Data Center.

3. Summary and Discussion

We find that GR precession could play an important
role in the calculations pertaining to MOID and close
encounter scenarios in the case of certain small solar
system bodies (depending on their initial orbital ele-
ments) when long term impact risk possibilities are
considered. Previous works have looked into impact
probabilities and collision scenarios on planets from
different small body populations and this work aims to
see how such contributions get affected by the role of
GR in certain small bodies orbiting close to the sun.

Certain parallels in this GR influence are drawn be-
tween the cases of asteroids, comets and small perihe-
lion distance meteoroid streams in the context of close
encounter and impact scenarios on Earth.
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