

CO₂ condensation can seriously limit the deglaciation of Earth-like planets

M. Turbet (1), F. Forget (1), J. Leconte (2), B. Charnay (3) & G. Tobie (4)

(1) Laboratoire de Météorologie Dynamique, Sorbonne Universités, UPMC Univ Paris 06, CNRS, 4 place Jussieu, 75005 Paris, France (martin.turbet@lmd.jussieu.fr); (2) Laboratoire d'astrophysique de Bordeaux, Univ. Bordeaux, CNRS, B18N, allée Geoffroy Saint-Hilaire, 33615 Pessac, France; (3) LESIA, Observatoire de Paris, PSL Research University, CNRS, 11 Sorbonne Universités, UPMC Univ. Paris 06, Univ. Paris Diderot, Sorbonne Paris Cité; (4) Laboratoire de Planétologie et Géodynamique, UMR-CNRS 6112, 14 University of Nantes, 2 rue de la Houssinière, F-44322 Nantes, France.

Context

It is widely believed that the carbonate-silicate cycle [1,2,3] is the main agent (through volcanism, and when weathering ceases) to trigger deglaciations by CO₂ greenhouse warming on Earth and by extension on Earth-like planets when they get in frozen state.

We use a 3D Global Climate Model (the LMD Generic Model) to simulate the ability of planets initially completely frozen to escape from glaciation episodes by accumulating enough gaseous CO₂ [4]. The model includes CO₂ condensation and sublimation processes and the full water cycle.

Results

We find that initially completely frozen planets that accumulate CO₂ through volcanism can evolve in three different climate regimes:

- 1) The greenhouse effect of CO₂ is too weak to trigger a deglaciation. The planet stays in a snowball state but keep accumulating CO₂ in the atmosphere.
- 2) The greenhouse effect of CO₂ is sufficient to raise the surface temperatures in equatorial regions above the melting temperature of water ice. The planet escape from glaciation.
- 3) The greenhouse effect of CO₂ is too weak to raise the surface temperatures of the poles above the condensation temperature of CO₂. In this case, the gaseous CO₂ collapses and the planet is locked in a global glaciated state, with two permanent CO₂ polar ice caps.

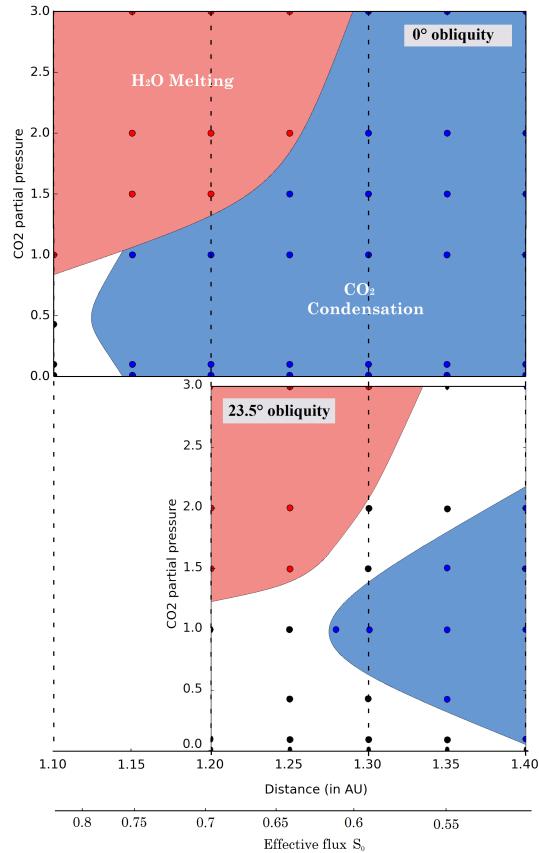


Figure 1: Climate regimes reached as function of the equivalent distance from a Sun-like star (in AU) and the CO₂ partial pressure, assuming a cold start (i.e. snowball state without permanent CO₂ ice deposits). Figures correspond to Earth-like planets with 0° (top panel) obliquity or 23.5° obliquity (bottom panel). The red color roughly depicts the region where deglaciation is observed. The blue region represents glaciated states where CO₂ collapses permanently. The white region describes cases where none of these two previous conditions were reached.

Quantitatively, and as illustrated on Fig. 1, we find that planets with Earth-like characteristics (size, mass, obliquity, rotation rate, ...) orbiting a Sun-like star may never be able to escape from a glaciation era if their orbital distance is greater than ~ 1.27

Astronomical Units (Flux $< 847 \text{ W m}^{-2}$, $S_{\text{eff}} < 0.62$), because CO₂ would condense at the poles – here the cold traps – forming permanent CO₂ ice caps. This limits the amount of CO₂ in the atmosphere and thus its greenhouse effect.

Furthermore, our results indicate that for (1) high planetary rotation rates ($P_{\text{rotation}} < 24 \text{ h}$), (2) low obliquity ($< 23.5^\circ$), (3) low background gas partial pressures ($< 1 \text{ bar}$), and (4) high water ice albedo (> 0.6), the CO₂ polar condensation could occur for significantly lower orbital distance.

For each possible configuration, we show that the amount of CO₂ that can be trapped in the polar caps depends on the efficiency of CO₂ ice to flow laterally as well as its gravitational stability relative to subsurface water ice. The flow of CO₂ ice from polar regions to the equator is mostly controlled by the bottom glacier temperature, and hence by the internal heat flux of the planet. We find that a frozen Earth-like planet located at 1.30 AU of a Sun-like star could store as much as 1.5/4.5/15 bars of dry ice at the poles, for internal heat fluxes of 100/30/10 mW m⁻².

But these amounts are in fact lower limits. For planets with a significant water ice cover, we show that CO₂ ice deposits should be gravitationally unstable. They get buried beneath the water ice cover in very short timescales of 10^2 - 10^3 yrs, mainly controlled by the viscosity of water ice. For water ice cover exceeding ~ 300 meters (or geothermal heat flux lower than $\sim 0.4 \text{ W m}^{-2}$, respectively), we show that the CO₂ would be permanently sequestered underneath the water ice cover, in the form of CO₂ liquids, CO₂ clathrate hydrates and/or dissolved in subglacial water reservoirs. This would considerably increase the amount of CO₂ trapped and further reduce the probability of deglaciation.

[1] Walker, J. C. G., Hays, P. B., and Kasting, J. F. (1981). A negative feedback mechanism for the long term stabilization of the earth's surface temperature. *J. Geophys. Res.*, 86:9776–9782.

[2] Kasting, J., Whitmire, D. P., and Reynolds, R. T. (1993). Habitable zones around main sequence stars. *Icarus*, 101:108–128.

[3] Kump, L. R., Brantley, S. L., and Arthur, M. A. (2000). Chemical weathering, atmospheric CO₂ and climate. *Annu. Rev. Earth Planet. Sci.*, 28:611.

[4] Turbet M., Forget F., Leconte J., Charnay B. and G. Tobie. CO₂ condensation is a serious limit to the deglaciation of Earth-like planets. ArXiv eprint 1703.04624.

References