

The size distribution of dust from comet 67P/Churyumov-Gerasimenko

J. Agarwal and H. Böhnhardt
Max-Planck-Institut für Sonnensystemforschung, Göttingen, Germany (agarwal@mps.mpg.de)

Abstract

The size distribution in a given ensemble of cometary dust grains reveals, e.g., which particles dominate the optical scattering cross-section when observed from a distance, and which particles carry the bulk of mass ejected into the interplanetary environment by the comet. The size distribution reflects the conditions under which the refractory material was stored in the comet and the processes releasing the dust from the surface. Potentially, it also preserves information on the material of which the comet has formed.

All instruments on board Rosetta have been sensitive to dust, and many have contributed to determining the size distribution, in situ or remotely [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. Different instruments were sensitive to different size ranges and measured different physical quantities from which the particle sizes were derived.

We will give a synopsis of published Rosetta measurements of the dust size distribution in comet 67P, identify comparable measurements, and check their compatibility. We will address systematic variations of the size distribution with season (comet true anomaly), region of origin of the dust, and spacecraft position. We will briefly discuss possible reasons if variations are found.

References

- [1] A. Rotundi et al., Dust measurements in the coma of comet 67P/Churyumov-Gerasimenko inbound to the Sun, *Science* 347 (1) (2015) aaa3905.
- [2] M. Fulle et al., Evolution of the Dust Size Distribution of Comet 67P/Churyumov-Gerasimenko from 2.2 au to Perihelion, *ApJ* 821 (2016) 19.
- [3] M. Fulle et al., Comet 67P/Churyumov-Gerasimenko preserved the pebbles that formed planetesimals, *MNRAS* 462 (2016) S132–S137.
- [4] M. Hilchenbach et al., Comet 67P/Churyumov-Gerasimenko: Close-up on Dust Particle Fragments, *ApJL* 816 (2016) L32.
- [5] S. Merouane et al., Dust particle flux and size distribution in the coma of 67P/Churyumov-Gerasimenko measured in situ by the COSIMA instrument on board Rosetta, *A&A* 596 (2016) A87.
- [6] S. Mottola et al., The structure of the regolith on 67P/Churyumov-Gerasimenko from ROLIS descent imaging, *Science* 349 (2).
- [7] M. Pajola et al., Size-frequency distribution of boulders >7 m on comet 67P/Churyumov-Gerasimenko, *A&A* 583 (2015) A37.
- [8] M. Pajola et al., The southern hemisphere of 67P/Churyumov-Gerasimenko: Analysis of the pre-perihelion size-frequency distribution of boulders >7 m, *A&A* 592 (2016) L2.
- [9] M. Pajola et al., The Agilkia boulders/pebbles size-frequency distributions: OSIRIS and ROLIS joint observations of 67P surface, *MNRAS* 462 (2016) S242–S252.
- [10] A. Hirn et al., Dust Impact Monitor (SESAME-DIM) on board Rosetta/Philae: Millimetric particle flux at comet 67P/Churyumov-Gerasimenko, *A&A* 591 (2016) A93.
- [11] F. Poulet et al., Origin of the local structures at the Philae landing site and possible implications on the formation and evolution of 67P/Churyumov-Gerasimenko, *MNRAS* 462 (2016) S23–S32.
- [12] T. Mannel et al., Fractal cometary dust - a window into the early Solar system, *MNRAS* 462 (2016) S304–S311.