

## Small Bodies Near and Far (SBNAF): Characterization of asteroids and TNOs

**T. G. Müller** (1), A. Marciniak (2), C. Kiss (3), R. Duffard (4), V. Alí-Lagoa (1), P. Bartczak (2), M. Butkiewicz-Bąk (2), G. Dudziński (2), E. Fernández-Valenzuela (4), G. Marton (3), N. Morales (4), J.-L. Ortiz (4), D. Oszkiewicz (2), T. Santana-Ros (2), P. Santos-Sanz (4), R. Szakáts (3), A. Takácsné Farkas (3), E. Varga-Verebelyi (3)

(1) Max Planck Institute for Extraterrestrial Physics, Garching, Germany; (2) Astronomical Observatory of A. Mickiewicz University, Faculty of Physics, Poznań, Poland; (3) Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, Budapest, Hungary; (4) Instituto de Astrofísica de Andalucía - CSIC, Granada, Spain.

### Abstract

We present results from an EU Horizon2020-funded benchmark study (2016-2019) that addresses critical points in reconstructing physical and thermal properties of near-Earth, main-belt, and trans-Neptunian objects. The combination of the visual and thermal data from the ground and from astrophysics space missions is key to improving the scientific understanding of these objects. The development of new tools will be crucial for the interpretation of much larger data sets, but also for the operations and scientific exploitation of interplanetary missions. We combine different methods and techniques to get full information on selected bodies: lightcurve inversion, stellar occultations, thermophysical modeling, radiometric methods, radar ranging and adaptive optics imaging. The applications to objects with ground-truth information from interplanetary missions Hayabusa, NEAR-Shoemaker, Rosetta, and DAWN allow us to advance the techniques beyond the current state-of-the-art and to assess the limitations of each method.

### 1. Targets

For our benchmark study on minor bodies we selected important targets which were already visited by spacecraft (or will be visited soon), which have a wealth of data from different observing techniques available (or are candidates for being observed with new techniques), which are or will be useful in the calibration context, or which will allow us to address and solve specific scientific questions [1].

### 2. Techniques

The characterization of small bodies is based on lightcurve inversion, radiometry, occultation, radar,

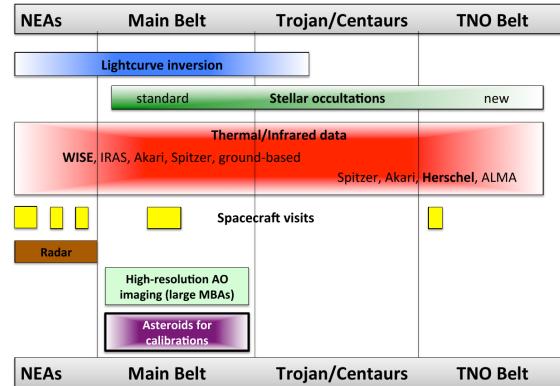



Figure 1: Overview of the SBNAF sample and the available observations.

and direct imaging techniques. We extract the crucial information from all available observations for a given target. The combination of different data sets leads to the development of new tools and methods which are validated against ground-truth information and to test capabilities and limitations. Figure 1 shows the different available techniques for our sample targets.

### 3. Tools, Services, and Products

**ISAM** (<http://isam.astro.amu.edu.pl/>) contains a collection of own and literature shape models for more than 900 asteroids. It allows to (i) display an asteroid orientation as seen from Earth at any date; (ii) to generate lightcurves; (iii) to animate the rotation; (iv) to produce 3D views; and (v) to investigate viewing and illumination geometries. The **Gaia-GOSA page** (<http://www.gaiagosa.eu>) is an interactive tool which supports observers in planning photometric observations of asteroids. The asteroid prediction tool is based on the Gaia orbit and scan-

ning law (ESA) and SSO ephemerides (MPC). The planned **Asteroid IR database** will contain thermal IR/submm/mm observations of small bodies (NEAs, MBAs, Trojans, Centaurs, TNOs), including measurements from ground (MIR, submm, mm instruments), airborne (SOFIA), and space projects (IRAS, MSX, AKARI, ISO, Spitzer, WISE, Herschel, Planck).

The SBNAF project makes **occultation predictions** for MBA events in 2017/18/19, as well as long- and short-term planning/calculations for TNO events. We also produce **high-quality images and fluxes** for NEAs, MBAs, and Centaurs/TNOs derived from Herschel photometric measurements. The new products are publically available from the Herschel Science Archive. We also support **asteroid-related calibration activities** for Herschel, ALMA, APEX, SOFIA, ISO, AKARI, IRAM, etc. calibration work.

## 4. Scientific results

Our first-year SBNAF scientific results are documented in a number of publications: [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18]. We will present selected results and highlights from our first 18 months of the SBNAF project.

## Acknowledgements

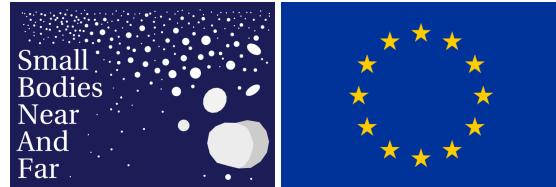



Figure 2: Left: The SBNAF project logo: <http://www.mpe.mpg.de/~tmueller/sbnaf/>. Right: The research leading to these results has received funding from the European Union’s Horizon 2020 Research and Innovation Programme, under Grant Agreement no 687378.

## References

- [1] Müller, T. G., Marciniak, A., Kiss, C. et al.: Small Bodies Near and Far (SBNAF): a benchmark study on physical and thermal properties of small bodies in the Solar System, *Advances in Space Research*, submitted, 2017.
- [2] Müller, T. G., Durech, J., Ishiguro, M. et al.: Hayabusa-2 mission target asteroid 162173 Ryugu (1999 JU3): Searching for the object’s spin-axis orientation, *A&A* 599, A103, 2017.
- [3] Müller, T. G., Marciniak, A., Butkiewicz-Bąk, M. et al.: Large Halloween asteroid at lunar distance, *A&A* 598, 63M, 2017
- [4] Santana-Ros, T., Dudziński, G., Bartczak, P.: Shape Models and Physical Properties of Asteroids, *Astrophysics and Space Science Proceedings* 46, 55, 2017.
- [5] Fernández-Valenzuela, E., Ortiz, J.-L., Duffard, R. et al.: 2008 OG<sub>19</sub>: a highly elongated Trans-Neptunian object, *MNRAS* 456, 2354, 2016.
- [6] Benedetti-Rossi, G., Sicardy, B., Buie, M. W. et al.: Results from the 2014 November 15th multi-chord stellar occultation by the TNO (229762) 2007 UK<sub>126</sub>, *AJ* 152, 156, 2017.
- [7] Schindler, K., Wolf, J., Bardecker, J. et al.: Results from a triple chord stellar occultation and far-infrared photometry of the trans-Neptunian object (229762) 2007 UK<sub>126</sub>, *A&A* 600, A12, 2017.
- [8] Kiss, C., Pál, A., Farkas-Takács, A. I. et al.: Nereid from space: Rotation, size and shape analysis from Kepler/K2, Herschel and Spitzer observations, *MNRAS* 457, 2908, 2016.
- [9] Szabó, G. M., Pál, A., Kiss, C. et al.: The heart of the swarm: K2 photometry and rotational characteristics of 56 Jovian Trojan asteroids, *A&A* 599, 44, 2017.
- [10] Szabó, R., Pál, A., Sárneczky, K. et al.: Uninterrupted optical light curves of main-belt asteroids from the K2 Mission, *A&A* 596, 40, 2016.
- [11] Pál, A., Kiss, C., Müller, T. G. et al.: Large size and slow rotation of the trans-Neptunian object (225088) 2007 OR<sub>10</sub> discovered from Herschel and K2 observations, *AJ* 151, 117, 2016.
- [12] Santos-Sanz, P., French, R. G., Pinilla-Alonso, N. et al.: JWST observations of stellar occultations by solar system bodies and rings, *PASP* 128, 8011S, 2016.
- [13] Fernández-Valenzuela, E., Ortiz, J.-L., Duffard, R. et al.: Physical properties of centaur (54598) Bienor from photometry, *MNRAS* 466, 4147F, 2017.
- [14] Perna, D., Barucci, M. A., Ishiguro, M. et al.: Spectral and rotational properties of near-Earth asteroid (162173) Ryugu, target of the Hayabusa2 sample return mission, *A&A* 599, L1, 2017.
- [15] Santos-Sanz, P., Lellouch, E., Groussin, O. et al.: TNOs are Cool": A Survey of the Transneptunian Region. XII. Thermal light curves of Haumea, 2003 VS2 and 2003 AZ84 with Herschel Space Observatory-PACS, *A&A*, accepted, 2017.
- [16] Kiss, C., Marton, G., Farkas-Takács, A. et al.: Discovery of a satellite of the large trans-Neptunian object (225088) 2007 OR<sub>10</sub>, *ApJL* 838, L1, 2017.
- [17] Alfí-Lagoa, V. & Delbo, M.: Sizes and albedos of Mars-crossing asteroids from WISE/NEOWISE data, *A&A*, accepted, 2017.
- [18] Melita, M. D., Duffard, R., Ortiz, J.-L. et al.: Assessment of different formation scenarios for the ring system of (10199) Chariklo, *A&A*, accepted, 2017.