

Water transport and water loss by collisions during planet formation

T. I. Maindl (1), C. M. Schäfer (2), N. Haghhipour (3), D. Bancelin (1), C. Burger (1) and R. Dvorak (1)

(1) Department of Astrophysics, University of Vienna, Austria (thomas.maindl@univie.ac.at), (2) Institut für Astronomie und Astrophysik, Eberhard Karls Universität Tübingen, Germany, (3) Institute of Astronomy and NASA Astrobiology Institute, University of Hawaii-Manoa, HI, USA

Abstract

In this contribution, we present results of collision simulations pertaining to water loss covering body masses ranging from a small planetary embryo to the mass of Earth. We find that for most realistic combinations of object masses, collision velocities, and impact angles a considerable amount of water is lost, which may significantly change the water inventory of formed terrestrial planets. Also, there is indication that beyond the ‘usual’ parameters characterizing a collision (velocity expressed in units of the mutual escape velocity v_{esc} and impact angle), water loss depends on factors like absolute mass, the projectile-target mass ratio, and to a certain extent the water distribution inside the objects.

1. Introduction

It is well established that planet formation involved a long-term sequence of collisional events between protoplanetary bodies. Typically, dynamical evolution studies use n-body simulations to investigate this collisional growth, but simplify the collision model based on perfect inelastic merging and linear momentum conservation (e.g., [9, 11]) or the application of simple fragmentation models ([2]). However, depending on the involved masses, collision speeds, and the impact angle (e.g., [10]) the collision outcome is one of efficient accretion/perfect merging, partial accretion, hit-and-run, or erosion and disruption ([3]). The perfect merging assumption does not model the actual physics of collisions ([1, 3]).

While water transport in giant impacts has been investigated (e.g., [7, 15]), the fate of volatiles such as water in small to mid scale collisions – which dominate at least the early stages of planet formation – remains largely unstudied. Existing planet formation simulations overestimate the water content of terrestrial planets. [8] study planet formation in binary sys-

tems and estimate an artificial increase of their water contents by a factor of 5–10; [16] use the perfect merging assumption for planet formation in single star systems and estimate their water contents to be accurate only within a factor of two.

2. Method

We perform simulations with our parallel 3D smooth particle hydrodynamics (SPH) code as introduced in [13] and [17]. It implements solid state continuum mechanics extended by a model for simulating brittle failure (cf. [5, 6]) and includes self-gravity. We apply a tensorial correction along the lines of [18] to achieve first-order consistency.

The material model is based on the Tillotson equation of state ([19]). We use the same material parameters for rock (basalt) and water ice as stated in [17].

In the individual scenarios described below we resolve the objects into between 20k SPH particles for the parameter study of Ceres-sized colliding bodies and one million SPH particles for the collision of a small planetary embryo with an object of Earth mass.

3. Results and conclusion

We performed three suites of simulations in different mass regimes, totaling to some 60 scenarios: (a) Ceres mass objects with velocities and impact angles from a dynamical study in a solar system-like environment ([12]); (b) larger planetary embryo collisions from n-body simulations by [9]; (c) Ceres-sized projectiles hitting planet-size targets in binary star systems at higher speed from [4].

Figure 1 summarizes the water loss resulting from the three suites of scenarios for one particular impact angle $\alpha = 30^\circ$ (measured from the vertical, chosen because it occurs in all three scenario sets) and several collision velocities up to $6 v_{\text{esc}}$. We define water loss as the ratio of the water-mass not gravitationally

bound to the surviving object(s) and the total initial water. Please refer to [14] for a more comprehensive discussion of the simulation results.

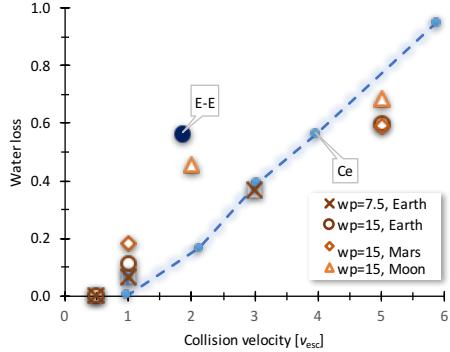


Figure 1: Water loss (y-axis) at a given impact angle (here, 30°). It not only depends on the collision velocity (x-axis), but also on absolute body mass (light blue: Ceres mass, dark blue labeled ‘E-E’: embryos of $0.5 M_{\text{Mars}}$ and $0.8 M_{\text{Moon}}$, brown: Ceres mass projectiles with different water content wp hit planet-sized targets as indicated).

Our results show that even for collisions at moderate speed water loss is not negligible – for embryos colliding at twice their mutual escape velocity as much as 10%...60% of their water content are lost *per collision*. Keeping in mind that (a) evaporation and sublimation further increase water loss and (b) a long series of collisions may happen until a planet is formed, it gets obvious that the assumption of perfect merging – in particular 100% accretion of volatiles – whenever a collision occurs does not hold. Present n-body based planet formation simulations suggest terrestrial planet water abundances which are too high by up to a factor of 5–10 (cf. [8, 16]). Finding a way to combine realistic collision simulations and n-body studies will likely close this gap between reality and simulations.

Acknowledgements

TIM, CB, and RD acknowledge support from the FWF Austrian Science Fund under project S11603-N16. NH acknowledges support from NASA PAST program under grant NNX14AJ38G. DB acknowledges support from the FWF Austrian Science Fund under project S11608-N16.

References

- [1] C. B. Agnor, R. M. Canup, and H. F. Levison. *Icarus*, 142, 219–237, 1999.
- [2] S. G. Alexander and C. B. Agnor. *Icarus*, 132, 113–124, 1998.
- [3] E. Asphaug. *Chemie der Erde / Geochemistry*, 70, 199–219, 2010.
- [4] D. Bancelin, E. Pilat-Lohinger, T. I. Maindl, F. Ragossnig, and C. Schäfer. *AJ, in print*, 2017.
- [5] W. Benz and E. Asphaug. *Icarus*, 107, 98, 1994.
- [6] W. Benz and E. Asphaug. *Computer Physics Communications*, 87, 253–265, 1995.
- [7] R. M. Canup and E. Pierazzo. In S. Mackwell and E. Stansbery, editors, *37th Annual Lunar and Planetary Science Conference*, volume 37 of *Lunar and Planetary Inst. Technical Report*, page 2146, 2006.
- [8] N. Haghishipour and S. N. Raymond. *ApJ*, 666, 436–446, 2007.
- [9] A. Izidoro, K. de Souza Torres, O. C. Winter, and N. Haghishipour. *ApJ*, 767, 54, 2013.
- [10] Z. M. Leinhardt and S. T. Stewart. *ApJ*, 745, 79, 2012.
- [11] J. I. Lunine, D. P. O’Brien, S. N. Raymond, A. Morbidelli, T. Quinn, and A. L. Graps. *Advanced Science Letters*, 4, 325–338, 2011.
- [12] T. I. Maindl and R. Dvorak. *IAU Symposium*, 299, 370–373, 2014.
- [13] T. I. Maindl, C. Schäfer, R. Speith, Á. Süli, E. Forgács-Dajka, and R. Dvorak. *Astronomische Nachrichten*, 334(9), 996–999, 2013.
- [14] T. I. Maindl, C. M. Schäfer, N. Haghishipour, C. Burger, and R. Dvorak. In T. I. Maindl, H. Vavoglis, and R. Dvorak, eds, *Proceedings of the First Greek-Austrian Workshop on Extrasolar Planetary Systems*, 137–153, 2017.
- [15] R. A. Marcus, D. Sasselov, S. T. Stewart, and L. Hernquist. *ApJ*, 719, L45–L49, 2010.
- [16] S. N. Raymond, T. Quinn, and J. I. Lunine. *Icarus*, 168, 1–17, 2004.
- [17] C. Schäfer, S. Riecker, T. I. Maindl, R. Speith, S. Scherrer, and W. Kley. *A&A*, 590, A19, 2016.
- [18] C. Schäfer, R. Speith, and W. Kley. *A&A*, 470, 733–739, 2007.
- [19] J. H. Tillotson. Technical Rep. General Atomic Report GA-3216, General Dynamics, San Diego, CA, 1962.