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Abstract
In this contribution, we present results of collision
simulations pertaining to water loss covering body
masses ranging from a small planetary embryo to the
mass of Earth. We find that for most realistic com-
binations of object masses, collision velocities, and
impact angles a considerable amount of water is lost,
which may significantly change the water inventory of
formed terrestrial planets. Also, there is indication that
beyond the ‘usual’ parameters characterizing a colli-
sion (velocity expressed in units of the mutual escape
velocity vesc and impact angle), water loss depends on
factors like absolute mass, the projectile-target mass
ratio, and to a certain extent the water distribution in-
side the objects.

1. Introduction
It is well established that planet formation involved
a long-term sequence of collisional events between
protoplanetary bodies. Typically, dynamical evolu-
tion studies use n-body simulations to investigate this
collisional growth, but simplify the collision model
based on perfect inelastic merging and linear momen-
tum conservation (e.g., [9, 11]) or the application of
simple fragmentation models ([2]). However, depend-
ing on the involved masses, collision speeds, and the
impact angle (e.g., [10]) the collision outcome is one
of efficient accretion/perfect merging, partial accre-
tion, hit-and-run, or erosion and disruption ([3]). The
perfect merging assumption does not model the actual
physics of collisions ([1, 3]).

While water transport in giant impacts has been in-
vestigated (e.g., [7, 15]), the fate of volatiles such as
water in small to mid scale collisions – which dom-
inate at least the early stages of planet formation –
remains largely unstudied. Existing planet formation
simulations overestimate the water content of terres-
trial planets. [8] study planet formation in binary sys-

tems and estimate an artificial increase of their water
contents by a factor of 5–10; [16] use the perfect merg-
ing assumption for planet formation in single star sys-
tems and estimate their water contents to be accurate
only within a factor of two.

2. Method
We perform simulations with our parallel 3D smooth
particle hydrodynamics (SPH) code as introduced in
[13] and [17]. It implements solid state continuum
mechanics extended by a model for simulating brittle
failure (cf. [5, 6]) and includes self-gravity. We apply
a tensorial correction along the lines of [18] to achieve
first-order consistency.

The material model is based on the Tillotson equa-
tion of state ([19]). We use the same material parame-
ters for rock (basalt) and water ice as stated in [17].

In the individual scenarios described below we re-
solve the objects into between 20k SPH particles for
the parameter study of Ceres-sized colliding bodies
and one million SPH particles for the collision of a
small planetary embryo with an object of Earth mass.

3. Results and conclusion
We performed three suites of simulations in differ-
ent mass regimes, totaling to some 60 scenarios: (a)
Ceres mass objects with velocities and impact angles
from a dynamical study in a solar system-like envi-
ronment ([12]); (b) larger planetary embryo collisions
from n-body simulations by [9]; (c) Ceres-sized pro-
jectiles hitting planet-size targets in binary star sys-
tems at higher speed from [4].

Figure 1 summarizes the water loss resulting from
the three suites of scenarios for one particular impact
angle α = 30◦ (measured from the vertical, chosen
because it occurs in all three scenario sets) and sev-
eral collision velocities up to 6 vesc. We define water
loss as the ratio of the water-mass not gravitationally
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bound to the surviving object(s) and the total initial
water. Please refer to [14] for a more comprehensive
discussion of the simulation results.
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Figure 1: Water loss (y-axis) at a given impact angle
(here, 30◦). It not only depends on the collision ve-
locity (x-axis), but also on absolute body mass (light
blue: Ceres mass, dark blue labeled ‘E-E’: embryos of
0.5MMars and 0.8MMoon, brown: Ceres mass projec-
tiles with different water content wp hit planet-sized
targets as indicated).

Our results show that even for collisions at mod-
erate speed water loss is not negligible – for embryos
colliding at twice their mutual escape velocity as much
as 10 %. . . 60 % of their water content are lost per col-
lision. Keeping in mind that (a) evaporation and sub-
limation further increase water loss and (b) a long se-
ries of collisions may happen until a planet is formed,
it gets obvious that the assumption of perfect merging
– in particular 100 % accretion of volatiles – whenever
a collision occurs does not hold. Present n-body based
planet formation simulations suggest terrestrial planet
water abundances which are too high by up to a factor
of 5–10 (cf. [8, 16]). Finding a way to combine realis-
tic collision simulations and n-body studies will likely
close this gap between reality and simulations.
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