

A three-dimensional geological reconstruction of Noctis Labyrinthus slope tectonics from CaSSIS data

M.Massironi (1, 2), R. Pozzobon (1), A.Lucchetti (2), E.Simioni (2, 3), C.Re (2), T. Mudrič (2), M. Pajola (4)
G.Cremonese (2), A. Pommere (5), F. Salese (6), D. Mege (7), N.Thomas (5)

(1) Dept.Geosciences and CISAS , University of Padova, Italy (matteo.massironi@unipd.it); (2) INAF, Osservatorio Astronomico di Padova, Italy; (3) CNR-Institute for Photonics and Nanotechnologies, Padova LUXOR, Padova, Italy (4) NASA Ames Research Center, Moffett Field, CA 94035, USA, (5) Physics Institute, Space Research and Planetary Sciences - University of Bern, Switzerland, (6) IRSPPS, Università D'Annunzio, Chieti-Pescara, Italy, (7) Space Research Centre, Polish Academy of Sciences ul. Bartycka 18A, Warsaw, Poland

Abstract

In November 2016 the CaSSIS (Colour and Stereo Surface Imaging System [1]) imaging system onboard the European Space Agency's ExoMars Trace Gas Orbiter (TGO) acquired 18 images (each composed by 30 framelets for each of the 4 colour channels) of the Martian surface. The first stereo-pairs were taken during the closest approach, at a distance of 520 km from the surface, over the Hebes Chasma and Noctis Labyrinthus regions. In the latter case a DTM was prepared over a north facing slope bounding to the north a 2000 m deep depression and to the south a plateau complicated by extensional fault networks [2] (Fig. 1). Such slope is characterised by a downthrown block that can be interpreted as a Deep Seated Gravitational Slope Deformation (DSGSD) sensu [3,4]. In this work we will present a 3D geological reconstruction of the phenomenon that allowed us to constrain the possible main sliding surface, the volumes involved in the gravitational process and the kinematics of the mass movement.

1. 3D topographical and geological reconstructions

The DTM was realized by the pipeline developed by the team at the Astronomical Observatory of Padova (OAPD-INAF), the procedure includes the definition of tie-points by SURF operator [5], the production of a starting disparity map based on a fast NCC [6], and an iterative sub-pixel refinement with a least square matching algorithm [7]. The 3D geological reconstruction of the DSGSD was obtained using the 3DMove software, which enabled us to wrap the

images onto the DTM and interpolate the mean stratification outcropping along the upper part of the displaced mass as well as the sliding plain at its base. 3DMove provided us the possibility to restore the geological section before the downward displacement and infer the kinematics of the mass movement.

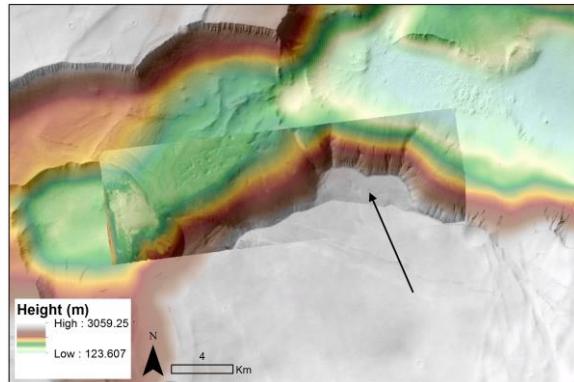


Figure 1 CaSSIS DTM in Noctis Labyrinthus over HRSC DTM. Note the downthrown block (black arrow) on the North eastern part of the CASSIS DTM.

2. Results

The CaSSIS images of the Noctis Labyrinthus acquired from the ExoMars Capture Orbit in November 2016 have revealed a DSGSD whose downward displacement exposed a 250m-high main scarp in the crown area. The displaced body does not show major internal deformations implying a still evolving en-mass sliding. The preserved stratification on the main downthrown block appear to be tilted suggesting a rotational sliding process with a gliding

surface defining a depth of the displaced mass of about 750 m (fig. 2). The upper part of the gliding surface has the same orientation of the main extensional faults transecting the plateau. This suggests a substantial structural control of the gravitational phenomena whose main gliding surface nucleated on inherited tectonic structures.

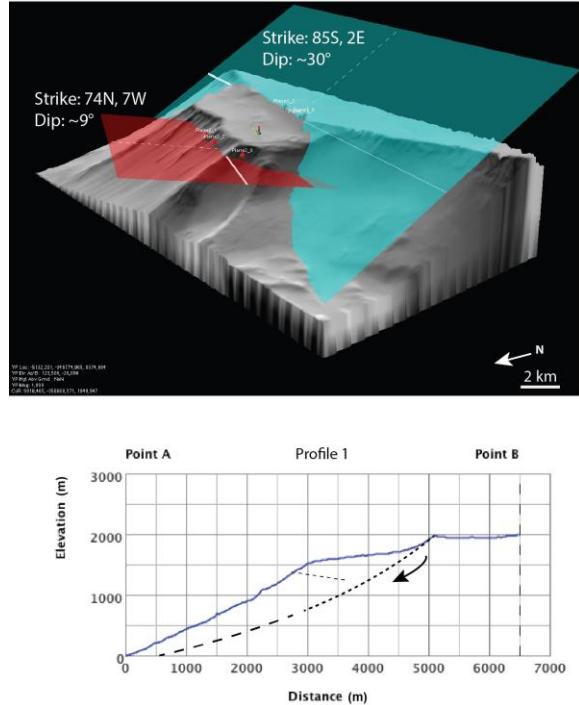


Figure 2. Top image: CASSIS DTM and interpolated planes of the stratification (red) and the upper part of the sliding surface (blue). Bottom Image: geological section showing the tilted strata and the inferred gliding plain.

Acknowledgements

The authors wish to thank the spacecraft and instrument engineering teams for the successful completion of the instrument. CaSSIS is a project of the University of Bern and funded through the Swiss Space Office via ESA's PRODEX programme. The instrument hardware development was also supported by the Italian Space Agency (ASI) (ASI-INAF agreement no.I/018/12/0), INAF/Astronomical Observatory of Padova, and the Space Research Center (CBK) in Warsaw. Support from SGF (Budapest), the University of Arizona (Lunar and Planetary Lab) and NASA are also gratefully acknowledged.

References

- [1] Thomas, N. et al., 2016. 47th LPSC, Abstract # 1306.
- [2] Cremonese G., Simioni E., Re C., Mudric T., Lucchetti A., Massironi M., Pommerol A., Roloff V.A., Thomas N., Tornabene L.: First stereo reconstruction for the CaSSIS stereo camera on board the ExoMars Trace Gas Orbiter, LPSC, 2017
- [3] Radbruch-Hall, D.: Gravitational creep of rock masses on slopes. In: Voight, B. (Ed.), *Rocksides and Avalanches — Natural Phenomena. Developments in Geo- technical Engineering*, vol. 14. Elsevier, Amsterdam, pp. 608–657, 1978.
- [4] Crosta, G.: Landslide, spreading, deep seated gravitational deformation: analysis, examples, problems and proposals. *Geografia Fisica e Dinamica Quaternaria* 19, 297–313, 1996
- [5] Bay et al., *Comput. Vision Image Und.*, 110, 2008.
- [6] Lewis, J.P. *Vision Interface*. 1995.
- [7] Grün, A.. *South African J. Photogramm. Re-mote Sensing and Cartography*, 14, 3, 1985.