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Abstract

Using the exact law of compressible isothermal mag-
netohydrodynamic (MHD) turbulence, we give the
first estimation of the energy cascade rate (|e|) in the
Earth’s magnetosheath using THEMIS and CLUSTER
spacecraft data. We show that |e| is at least three or-
ders of magnitude larger than its value in the solar
wind. We identify different type of turbulent fluctua-
tions (magnetosonic and Alfvénic-like) with different
properties and scaling laws relating the turbulent Mach
number and the energy cascade rate. This observa-
tional study can actually help improving current mod-
els of astrophysical turbulence by addressing the role
of compressibility behind astrophysical shocks, in the
interstellar medium or in supernova remanents. This
work is curently in preparation for submission [3].

1. Introduction

Compressible turbulence has been a subject of active
research within the space physics community for the
last three decades especially that it is believed to be es-
sential for understanding the physics of the solar wind
(for instance the heating of the fast wind), of the in-
terstellar medium (in cold molecular clouds) and other
astrophysical and space phenomena. Since the mag-
netosheath is characterized by a high level of density
fluctuations, ~ 50% — 100% [5, 2] in comparison with
5% — 20% in the solar wind, it actually represents a
key region of the near-Earth space where significant
progress can be made in understanding compressible
plasma turbulence, which is poorly modeled or under-
stood.

1.1. Compressible and incompressible ex-
act laws in MHD

The role of density fluctuations is highlighted by com-
paring the results obtained from the exact laws of
MHD isothermal compressible model (BG13) derived
recetly by Banerjee and Galtier [1] and the incom-
pressible MHD model derived by Politano and Pou-
quet [4] (PP98). Under the assumptions of time sta-
tionarity, space homogeneity and isotropy turbulence,
the PP98 exact law is given by:
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v being the plasma flow velocity, va = B/\/iopo
is the magnetic field normalized to a velocity and
po = (p) the mean plasma density, 5z = z%(x +
£) — z*(x) is the spatial increment of z¥ at a scale
£ in the radial direction, (...) is the ensemble average,
8 = (h(x + £) +1(x))/2, e = c2In(p/po) is the
internal energy, with ¢, the constant isothermal sound
speed, p the local plasma density (p = po + p1) and
B = 2c2/v% is the local ratio of the total thermal to
magnetic pressure (3 = B, + 3,).



2. Observations and results

We use the in situ wave and plasma data from the Clus-
ter and Themis spacecraft.
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Figure 1: (Right) Incompressible Alfvénic and (left)
compressible magnetosonic events. (d) and (h) the cor-
responding magnetic compressibility.

Figure 1 shows two examples of the analyzed group
of data. An incompressible Alfvénic case study and a
compressible magnetosonic one. This was done using
the magnetic compressibility C}| = dB%/6B? (ie.,
the ratio between the PSDs of the parallel to the total
magnetic fluctuations; parallel being along the mean
background field By).

Figure 2 shows the corresponding cascade rates, |ec|
and |e;, from the compressible BG13 and the incom-
pressible model PP98, respectively. Two main obser-
vations can be made: first, the incompressible cascade
rate |eg| is larger by a factor ~ 100 in the magne-
tosonic case compared to the Alfvénic one. Second,
density fluctuations in the magnetosonic case amplify
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Figure 2: The energy cascade rates computed using
BG13 (red) and PP98 (black) for the same (a) Alfvénic
and (b) magnetosonic-like events of Figure 1.

lec| by a factor ~ 7 w.r.t. |er|. These observations are
representative of the all the samples (not shown here).

3. Summary and Conclusions

This study has provided the first estimation of |e| in
MHD turbulence in a the compressible magnetosheath
plasma. Furthermore, other features related to the tur-
bulent Mach number were identified (not shown here).
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