

Thermal Structure of Pluto's Lower Atmosphere

R. V. Yelle (1), T. Koskinen (1) and P. Lavvas (2)

(1) Department of Planetary Sciences, University of Arizona, Tucson, Arizona (2) University of Reims, Champaghen-Arden, Reims, France (rogeryelle@gmail.com)

Abstract

Prior to the New Horizons (NH) encounter with Pluto it was expected that the atmosphere was composed primarily of N₂ with a significant abundance of CH₄, that the atmospheric temperature rose rapidly from a surface temperature of ~36 K to ~105 K near ~0.1 Pa and that this high temperature powered an escape rate of 10^{27} s^{-1} . The composition and rapid temperature rise were confirmed but it was also discovered, through NH and Alma observations, that the atmospheric temperature dropped from its maximum of 105 K to a 70-80 K in the upper atmosphere and that, as a consequence, the atmospheric escape rate was orders of magnitude smaller than predicted. We investigate this problem by constructing non-LTE radiative-conduction models for the thermal structure of Pluto's atmosphere based on the observed CH₄ abundance as well as species produced by photolysis of CH₄ and N₂, including C₂H₂, C₂H₄, C₂H₆, and HCN. We find that that temperature drop from 105 K to 70-80 K can be explained by radiative cooling by C₂H₂, C₂H₆, and HCN. Cooling by undetected species, such as H₂O, is not required. We will also discuss the uncertainties in calculations of the radiative cooling rate and the implications for the escape rate at other phases of Pluto's eccentric orbit.