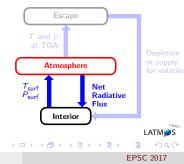
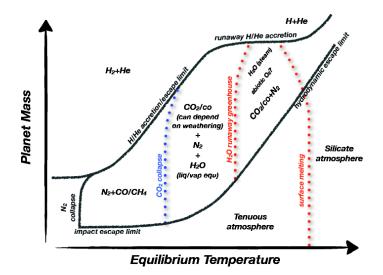
Modeling the albedo of magma ocean planets

W. Pluriel¹, E. Marcq¹, M. Turbet², F. Forget², A. Salvador³

¹ LATMOS/IPSL/CNRS/UPMC/UVSQ, Guyancourt, France ² LMD/IPSL/CNRS, Paris, France ³ GEOPS/IPSL/CNRS/UPSud, Orsay, France


EPSC September 19th 2017, Riga (Latvija)

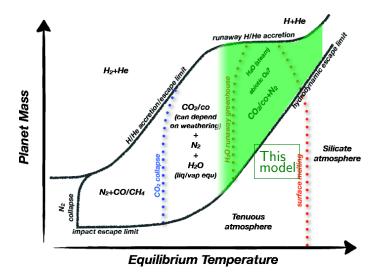

- Context
- Atmospheric submodel designed for coupling in order to study a generic telluric planet early evolution.
 - Interior Atmosphere Escape
 - Atmospheric module [Marcq, 2012; Marcq et al., 2017] is operational.

Inputs

- Surface temperature
- Surface pressures (H₂O, CO₂, N₂).
- Outputs
 - Spectral reflectance how much energy is absorbed from the host star?
 - OLR how fast does the magma ocean cool? Which **thermal spectrum** can be observed?
 - TOA Z, T, ρ and composition at 0.1 Pa level: lower boundary condition for future escape submodel.

From Forget & Leconte (2013)

Pluriel et al. (LATMOS)


Magma Planets Albedo

EPSC 2017

(日) (同) (日) (日) (日)

LATM

From Forget & Leconte (2013)

Pluriel et al. (LATMOS)

Magma Planets Albedo

EPSC 2017

(日) (同) (日) (日) (日)

LATM

- Radiative-convective 1D model
 - Inspired from Abe & Matsui (1988) and Kasting (1988)
 - Main difference no mandatory radiative balance ($T_{eff} \ge T_{eq}$)!
 - Surface temperature prescribed by interior submodel.

Algorithm

- Prescribed P grid up to 0.1 Pa.
- 2 Prescribed T(P) profile.
- Some computation of Z(P) et $\rho_i(P)$ according to equations of state and hydrostatic equilibrium.
 - $\bullet~CO_2$ and N_2 considered as ideal gases.
 - H_2O is **not** ! $P > P_c$ and/or $T > T_c$ common.
- Computation of gaseous absorption (k-correlated LUT) and Rayleigh opacities from 0 to 3.5 · 10⁵ cm⁻¹
- Somputation of radiative properties of possible clouds.
- O Computation of IR and SW radiative fluxes with DISORT (4 streams).

イロト 不得 トイヨト イヨト

• 3 layers from surface up to mesopause

Dry Troposphere follows a dry adiabat. Moist Troposphere follows a moist adiabat. Clouds are located there. Mesosphere considered isothermal.

Boundaries

Dry/Moist where H_2O reaches saturation (if already occuring at surface \Rightarrow no dry troposphere and formation of a H_2O ocean).

Moist/Mesosphere where $T < T_0 = TOA$ temperature, fixed here at 200 K.

- $\alpha_{v} = \rho_{H_{2}O} / (\rho_{CO_{2}} + \rho_{N_{2}})$
 - Vertically uniform within dry troposphere and mesosphere.
 - Decreasing with increasing height within moist troposphere.

Scattering

Rayleigh

- Simple $\propto \lambda^{-4}$ dependency for CO₂, N₂ and H₂O [Kopparapu et al., 2013; Sneep & Ubachs, 2005].
- Clouds (optional)
 - Present throughout the moist troposphere
 - Mass loading from Kasting (1988) for Farth-like clouds.
 - Optical properties $(Q_{\text{ext}}, \varpi_0, g)$ similar to present day Earth-like clouds.
 - Henvey-Greenstein phase function

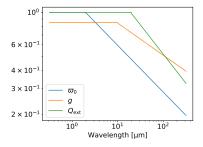


Figure: Cloud optical properties

Spectral Lines

- High-resolution spectra computed with KSPECTRUM [Eymet 2009].
- Yields a (α_v, T, P) grid of 16 k-coefficients [Wordsworth et al., 2010].
- Reverting to "grey" opacities possible
 - if approximate, fast computations are needed with no need for any spectral output.

Continuum opacities

CO₂-CO₂: derived from Venus measurements [*Bézard, priv. comm.*] H₂O-H₂O: from MT_CKD v2.5 [*Clough et al., 2005*] CO₂-H₂O: not taken into account yet.

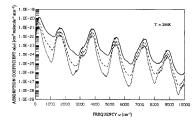


Figure: Continua for H_2O-H_2O (solid) and H_2O-CO_2 (dashed) from *Ma & Tipping (1992)*

-∢∃>

- NIR windows open up for $T_{surf} > T_{\varepsilon}$
 - Detectability and magma ocean cooling rate decrease strongly for ${\cal T}_{\rm surf} < {\cal T}_{\varepsilon}$
 - $\mathcal{T}_{\varepsilon}$ depends on H_2O and CO_2 atmospheric inventory

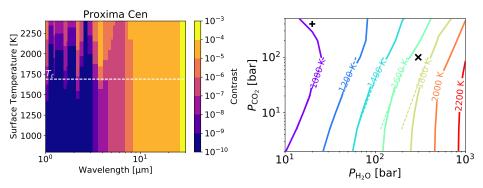
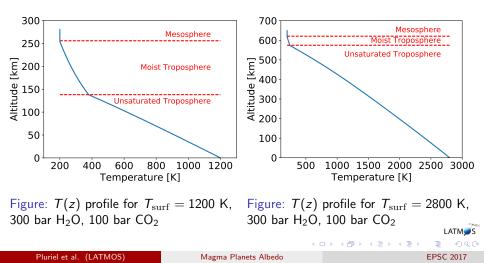
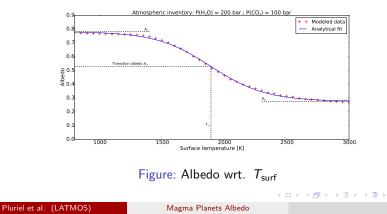



Figure: OLR Contrast for a 300 bar H_2O , 100 bar CO_2 Earth-like planet around Proxima Centauri

Figure: T_{ε} contours wrt. H₂O and CO₂ surface pressures


• Clouds become optically thinner with increasing T_{surf}

- Vertical extent decreases.
- Integrated mass loading much more so.



• With clouds

- Overall visible/NIR reflectance dominated by clouds.
- Loss of spectral constrast at higher T_{surf}
- Without clouds
 - Higher atmospheric temperatures lead to decrease in continuum opacity ⇒ increasing reflectance with increasing T_{surf}?

- Spectral reflectance decreases with increasing wavelength
 - \Rightarrow Lower albedo around M-stars compared to G-stars
- Two regimes for albedo depending on T_{surf} wrt. $T_A = T_{\varepsilon} + 240 \,\mathrm{K}$ $T_{surf} \ll T_A$ High albedo, dominated by cloud scattering $T_{surf} \gg T_A$ Low albedo, dominated by Rayleigh scattering
- $\bullet\,$ Broadly speaking, albedo increases with CO_2 content, decreases with H_2O content

- Spectral reflectance decreases with increasing wavelength
 ⇒ Lower albedo around M-stars compared to G-stars
- Two regimes for albedo depending on T_{surf} wrt. $T_A = T_{\varepsilon} + 240 \,\mathrm{K}$ $T_{surf} \ll T_A$ High albedo, dominated by cloud scattering $T_{surf} \gg T_A$ Low albedo, dominated by Rayleigh scattering
- \bullet Broadly speaking, albedo increases with CO_2 content, decreases with H_2O content

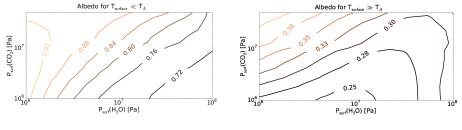


Figure: Low T_{surf} albedo around the Sun Figure: High T_{surf} albedo around the Sun

イロト 不得下 イヨト イヨト

Summary

- Simple coupled atmospheric 1D model already operational [Lebrun et al., 2013; Salvador et al., 2017]
 - Like Hamano et al. (2013,2015), can be made more complex than atmospheric parametrizations usually embedded in coupled magma ocean cooling studies [Elkins-Tanton 2008]
- Very high albedo until water ocean condenses
 - unless very young (less than 10⁵ yr)
- Albedo decreases with star temperature.
- To do
 - Publish SW model results *Marcq et al. (2017)* already published for thermal IR.
 - Smoothing the mesospheric temperature profile T(z) important for self-consistent TOA temperature.
 - Implement corrections to plane-parallel geometry for small planets and very hot atmospheres.
 - Longer simulations possible once coupled with an escape model.

(日) (同) (三) (三) (三)