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Introduction Context

Atmospheric submodel designed for
coupling in order to study a generic telluric
planet early evolution.

Interior – Atmosphere – Escape
Atmospheric module [Marcq, 2012;
Marcq et al., 2017] is operational.

Inputs

Surface temperature
Surface pressures (H2O, CO2, N2).

Outputs

Spectral reflectance how much energy is
absorbed from the host star?
OLR how fast does the magma ocean
cool? Which thermal spectrum can be
observed?
TOA Z , T , ρ and composition at 0.1 Pa
level: lower boundary condition for future
escape submodel.

Tsurf
Psurf

Net
Radiative
Flux

T and ρ
at TOA

Depletion
or supply
for volatiles

Atmosphere

Interior

Escape
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Introduction Context

From Forget & Leconte (2013)
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Introduction Context

This
model

From Forget & Leconte (2013)
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Introduction Summary

Radiative–convective 1D model

Inspired from Abe & Matsui (1988) and Kasting (1988)
Main difference no mandatory radiative balance (Teff ≥ Teq )!

Surface temperature prescribed by interior submodel.

Algorithm
1 Prescribed P grid up to 0.1 Pa.
2 Prescribed T (P) profile.
3 Computation of Z (P) et ρi (P) according to equations of state and

hydrostatic equilibrium.

CO2 and N2 considered as ideal gases.
H2O is not ! P > Pc and/or T > Tc common.

4 Computation of gaseous absorption (k-correlated LUT) and Rayleigh
opacities from 0 to 3.5 · 105 cm−1

5 Computation of radiative properties of possible clouds.
6 Computation of IR and SW radiative fluxes with DISORT (4 streams).
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Temperature profile Vertical Structure

3 layers from surface up to mesopause

Dry Troposphere follows a dry adiabat.
Moist Troposphere follows a moist adiabat. Clouds are located there.
Mesosphere considered isothermal.

Boundaries

Dry/Moist where H2O reaches saturation (if already occuring at
surface ⇒ no dry troposphere and formation of a H2O
ocean).

Moist/Mesosphere where T < T0 = TOA temperature, fixed here at
200 K.

αv = ρH2O/(ρCO2 + ρN2)

Vertically uniform within dry troposphere and mesosphere.
Decreasing with increasing height within moist troposphere.
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Radiative Fluxes Scattering

Rayleigh

Simple ∝ λ−4 dependency for CO2,
N2 and H2O
[Kopparapu et al., 2013; Sneep &
Ubachs, 2005].

Clouds (optional)

Present throughout the moist
troposphere
Mass loading from Kasting (1988) for
Earth-like clouds.
Optical properties (Qext, $0, g)
similar to present day Earth-like
clouds.
Henyey-Greenstein phase function
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Figure: Cloud optical properties
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Radiative Fluxes Opacities

Spectral Lines

High-resolution spectra computed with
KSPECTRUM [Eymet 2009].
Yields a (αv ,T ,P) grid of 16
k-coefficients [Wordsworth et al., 2010].
Reverting to “grey” opacities possible

if approximate, fast computations are
needed with no need for any spectral
output.

Continuum opacities

CO2-CO2: derived from Venus
measurements
[Bézard, priv. comm.]

H2O-H2O: from MT CKD v2.5
[Clough et al., 2005]

CO2-H2O: not taken into account yet.

Figure: Continua for H2O-H2O
(solid) and H2O-CO2 (dashed)
from Ma & Tipping (1992)
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Results Thermal radiation

NIR windows open up for Tsurf > Tε

Detectability and magma ocean cooling rate decrease strongly for
Tsurf < Tε

Tε depends on H2O and CO2 atmospheric inventory
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Figure: OLR Contrast for a 300 bar
H2O, 100 bar CO2 Earth-like planet
around Proxima Centauri
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Results Vertical Structure

Clouds become optically thinner with increasing Tsurf

Vertical extent decreases.
Integrated mass loading much more so.
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Figure: T (z) profile for Tsurf = 1200 K,
300 bar H2O, 100 bar CO2
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Figure: T (z) profile for Tsurf = 2800 K,
300 bar H2O, 100 bar CO2
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Results Spectral Reflectance

With clouds
Overall visible/NIR reflectance dominated by clouds.
Loss of spectral constrast at higher Tsurf

Without clouds
Higher atmospheric temperatures lead to decrease in continuum
opacity ⇒ increasing reflectance with increasing Tsurf?
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Figure: With clouds
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Figure: Without clouds
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Results Albedo (with clouds)

Spectral reflectance decreases with increasing wavelength
⇒ Lower albedo around M-stars compared to G-stars
Two regimes for albedo depending on Tsurf wrt. TA = Tε + 240K
Tsurf � TA High albedo, dominated by cloud scattering
Tsurf � TA Low albedo, dominated by Rayleigh scattering

Broadly speaking, albedo increases with CO2 content, decreases with
H2O content
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Figure: Albedo wrt. Tsurf
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Results Albedo (with clouds)

Spectral reflectance decreases with increasing wavelength
⇒ Lower albedo around M-stars compared to G-stars

Two regimes for albedo depending on Tsurf wrt. TA = Tε + 240K

Tsurf � TA High albedo, dominated by cloud scattering
Tsurf � TA Low albedo, dominated by Rayleigh scattering

Broadly speaking, albedo increases with CO2 content, decreases with
H2O content

Figure: Low Tsurf albedo around the Sun Figure: High Tsurf albedo around the Sun
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Conclusion

Summary
Simple coupled atmospheric 1D model already operational [Lebrun et
al., 2013; Salvador et al., 2017]

Like Hamano et al. (2013,2015), can be made more complex than
atmospheric parametrizations usually embedded in coupled magma
ocean cooling studies [Elkins-Tanton 2008]

Very high albedo until water ocean condenses

unless very young (less than 105 yr)

Albedo decreases with star temperature.

To do

Publish SW model results – Marcq et al. (2017) already published for
thermal IR.
Smoothing the mesospheric temperature profile T (z) – important for
self-consistent TOA temperature.
Implement corrections to plane-parallel geometry for small planets and
very hot atmospheres.
Longer simulations possible once coupled with an escape model.
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