

Constraining properties of disintegrating exoplanets Dimitri Veras University of Warwick (UK)

Disintegrating/evaporating planets

- <u>KELT-9 b</u>
- WASP-12 b
- <u>KOI 2700 b</u>
- **KIC 12557548B b**
 - <u>K2-22 b</u>
 - WD 1145+017 b

P ~26 hours

 $P \sim 35$ hours

- P~22 hours
- P~16 hours
- P~9 hours
- $P \sim 4.5$ hours

Hebb+ 2009

Gaudi+ 2017

- Rappaport+ 2014
- Rappaport+ 2012
- Sanchis-Ojeda+ 2015
- Vanderburg+ 2015

WD 1145+017 transits

Vanderburg et al. (2015, Nature, 526, 546-549)

WD 1145+017 transits

WD 1145+017 b papers (so far)

Observational

Vanderburg et al. (2015, Nature, 526, 546-549) 2015

Alonso et al. (2016, A&A, 589, L6) Gänsicke et al. (2016, ApJL, 818, L7) Rappaport et al. (2016, MNRAS, 458, 3904) Xu et al. (2016, ApJL, 816, L22) Zhou et al. (2016, MNRAS, 463, 4422)

2016

Croll et al. (2017, ApJ, 836, 82) Gary et al. (2017, MNRAS, 465, 3267) Hallakoun et al. (2017, MNRAS, 469, 3213) Redfield et al. (2017, ApJ, 839, 42) Kjurkchieva et al. (2017, PASA, 34, 32)

Theoretical

Gurri et al. (2017, MNRAS, 464, 321) Veras et al. (2017, MNRAS, 465, 1008) Farihi et al. (2017, MNRAS, In Press) 2017

Explaining observables

Veras et al. (2017, MNRAS, 465, 1008)

Collaborators

Philip J. Carter (University of Bristol, UK)
Zoë M. Leinhardt (University of Bristol, UK)
Boris T. Gänsicke (University of Warwick, UK)

Constraints

Disruption persists for 2 years Disruption intermittent Orbital period of ~4.499 hours

Rubble pile representations

Homogeneous	Homogeneous	Differentiated
Hexagonal		Core
Closest	Random	+
Packing	Packing	Mantle
A	B	B2
		1000 km

Homogeneous: total disruption

Veras et al. (2017, MNRAS, 465, 1008)

 $\begin{array}{l} \mathbf{homogeneous}\\ \rho=2.6~\mathrm{g/cm}^3\\ e=0.0\\ P=4.499~\mathrm{h} \end{array}$

Ring / disc formation

Disruption timescales: density

Veras et al. (2017, MNRAS, 465, 1008) Disruption times

Disruption timescales: eccentricity

Rubble pile representations

Homogeneous	Homogeneous	Differentiated
Hexagonal		Core
Closest	Random	+
Packing	Packing	Mantle
A	B	B2
		1000 km

Differentiated: Total disruption

Veras et al. (2017, MNRAS, 465, 1008)

differentiated $ho = 3.5 ext{ g/cm}^3$ e = 0.1 $P = 4.499 ext{ h}$

Differentiated: Partial disruption

Resulting transit curves

Conclusions

Veras et al. (2017, MNRAS, 465, 1008)

Asteroid disintegrating around WD 1145+017:

- Differentiated, not homogeneous

— Eccentricity < 0.01</p>

- Bulk density 3-4 g/cm^3

From just orbital period and transit curves

Merging exoplanets & asteroseismology 9 March 2018

Evolved Solar Systems

Home Programme

Abstract Submission

Logistics

Contact

MERGING GIANT-STAR ASTEROSEISMOLOGY WITH THE FATE OF EXTRASOLAR PLANETARY SYSTEMS

An RAS Specialist Discussion Meeting

London, UK, March 9th 2018

goo.gl/bVLBc9

Fate of planetary systems: red giant branch

Villaver et al. (2014)

 $1.5 M_{\odot}$

Fate of planetary systems: asymptotic giant branch

Mustill & Villaver (2012)

 $2.0 M_{\odot}$

Partial disruption characteristics

Stable to disruption

Ring / disc formation timescales

Veras et al. (2017, MNRAS, 465, 1008)

filling out uniform rings

Useful for other white dwarfs

Basic observational background

Vanderburg et al. (2015, Nature, 526, 546-549)

Basic observational background

Vanderburg et al. (2015, Nature, 526, 546-549)

Use other repeating features

Rappaport et al. (2016, MNRAS, 458, 3904)

