

What Titan's phase curves can teach us about exoplanet atmospheres

A. García Muñoz Technische Universität Berlin, Berlin, Germany

Collaborators:

P. Lavvas (U. Reims, France), R.A. West (JPL, US) &

J. Cabrera (DLR Berlin, Germany)

Phase curves

A classical problem in solar system science

E.g.: Venus, Mercury, Titan

- Phase curve shape —> atmospheric optical properties.
- Reflected sunlight —> Energy budget.

...which is highly relevant for exoplanets.

- We use solar system objects as benchmarks & motivation.
- In this exercise, we learn about Titan too!

Our work — Cassini Imaging Science Subsystem

García Muñoz, Lavvas & West, Nature Astronomy, 2017

Images:

- Total of ~6,000
- 12 years: 2004 2015
- 15 filters: 300 nm -> 940 nm
- Phase angles: 0 −> 165°

Our work — Cassini Imaging Science Subsystem

What's special with Titan

- Puffy atmosphere, $H_a/R_T \sim 0.015 >>$ other solar system planets
- Hazy atmosphere.
- (Photochemical) haze is strongly forward scattering (r_{eff}~3 μm).

Interpretation:

- Forward scattering of whole moon.
- excellent match of model (red) and observations (black symbols)...
 Reliable prediction based on DISR aerosol properties...

Brightness at large phase angles significantly exceeds brightness at full illumination

 $A_g\Phi(\alpha=180) \sim 10-200 A_g\Phi(0)$

Diagnostics. Theory.

- <u>Exponential atmosphere</u>, scale height H_g=kT/μg.
- Haze distributed vertically with H_a=H_g.
- Haze particles of prescribed size r_{eff}.
- Single scattering dominates scattered signal.

Planet-to-star contrast at α=180°:

$$\frac{F_p}{F_{\star}} = \frac{1}{a^2} \times (2\pi H_a R_p) \times p_a(\theta = 0) \varpi_{0,a}$$

Area of ring

Sensitive to haze size

Microphysical models are needed!!

Brightness surge occurs ONLY when:

Atmosphere is puffy, H_a/R_p ~0.01 or more.
AND

• $p_a(\theta=0)$ is large (—> large haze particles).

Inversely:

Detection of brightness surge will impose joint constraint on H_a/R_p $p_a(\theta=0)$

At exoplanets?

Considerations (I):

- Inflated (~puffy) exoplanets do exist —> large Ha/Rp.
- Hazy atmospheres. Plenty of them!
- Estimating $p_a(\theta=0)$ (particle size) is very uncertain.

$$\frac{F_p}{F_{\star}} = \frac{1}{a^2} \times 2\pi H_a R_p \times p_a(\theta = 0) \varpi_{0,a}$$

$$\frac{H_a}{R_p} \propto \frac{kT_{\rm eq}}{GM_p/R_p}$$

$$T_{\rm eq} = T_{\rm eff} (R_{\star}/2a)^{1/2}$$

Considerations (II):

$$\frac{F_p}{F_{\star}} = \frac{1}{a^2} \times 2\pi H_a R_p \times p_a(\theta = 0) \varpi_{0,a}$$

For very close-in planets, star is not point like! Finite angular size must be taken into account

Contrast at α=180°

CoRoT-24 b & other super-puffy Neptunes

(Lammer et al. 2016)

- Much more puffy than Titan, $H/R_T \sim 0.035 > 0.015$ of Titan
- Occultation. If $A_g \sim 0.3 F_p/F_s(\alpha=0) \sim 2.3 ppm$

Forward scattering:

• If $r_{eff} \sim 1-2 \mu m -> F_p/F_s(\alpha=170-175^\circ) \sim 10 ppm$

These objects would be easier to characterize in forward scattering than in occultation.

...if they occur around bright stars...

What Titan's phase curves can teach us about exoplanet atmospheres

- Phase curves contain valuable diagnotics information
- At large phase angles: info on aerosol stratification and particle sizes
- Non-detection of forward scattering sets a constraint.
- A way to probe puffy Neptunes?
- Real phase curves are NOT Lambertian. This should be a conclusion, not an assumption.
- Forward scattering has impact on:
 - Scattering of energy, phase integral q~3>1.5 (Lambertian)
 - Mp determination from Doppler-Ellipsoidal fitting. EPSC, 20.09.2017, Riga, Latvia