

Misleading projectile determination by Cr/Ni and Ni/Co ratios of Australasian microtektites and impact melt rocks

Gerhard Schmidt

Institute of Earth Science, Ruprecht-Karls-University Heidelberg, Germany (gerhard.schmidt@geow.uni-heidelberg.de)

Abstract

The identification of meteoritic material in melt rocks from impact craters needs significantly elevated abundances of elements depleted in the Earth's crust and enriched in meteorites. Inter-element ratios of Ni, Co, Cr, and Au are not reliable and misleading for projectile identification in terrestrial impactites. The reasons are (1) high abundances in the Earth crust and (2) mobilisation by secondary processes. The refractory highly siderophile elements Os, Ru, Ir, and Rh (PGE) are abundant in most meteorites but depleted in crustal rocks, less mobile and therefore most reliable elements for projectile identification. Magmatic iron projectiles can be distinguished from non-magmatic iron meteorites by their subchondritic Os/Ir and suprachondritic Ru/Ir ratios (e.g. Sääksjärvi in Finland and Rochechouart in France).

1. Introduction

Approximately 190 impact craters are currently known on Earth. Impact melt rocks are potential carriers of meteoritic material. About 20 iron meteorites and 20 chondrites have been identified as projectiles. The nature of the impactor and the location that generated the Australasian tektite/microtektite strewn field (~15% of the Earth's surface) is unknown [1].

2. Projectile identification

2.1 Australasian tektite strewn field

Recently, an ordinary chondritic impactor signature in Australasian microtektites have been proposed based on variations of Ni, Co and Cr inter-element ratios with concentrations of 680, 50, and up to ~370 µg/g, respectively [2]. High Ni, Co and Cr contents in Australasian microtektites were explained by up to ~5% chondritic impactor contamination [2] corresponding to about 20 ng/g of the refractory siderophile element Ir. However, the Indonesian tektite with high Ni and Cr abundances of 428 and

311 µg/g, respectively, show enrichments of about 4 ng/g Ir [3]. A chondritic impactor contribution appears to be inconsistent with observed Ni, Co, and Cr inter-element ratios. Incidentally, the Ni/Co ratios of chondrites and iron meteorites overlap and are not reliable for projectile identification. In contradiction, the Ni-rich tektite sample exhibit broadly chondrite-relative PGE proportions, although Ru/Ir is about 10% lower [3]. Non-chondritic PGE abundances in tektites with enrichments of Rh were explained by incorporation of IC iron meteorites as impactor [4].

2.2 Sääksjärvi (Finland)

The 5 km diameter impact crater in Finland is most likely formed by a magmatic iron meteorite, based on subchondritic Os/Ir and suprachondritic Ru/Ir ratios [5]. However, detected Cr/Ni, Ni/Co and Cr/Co ratios of the melt samples are much higher than those from iron meteorites with very low Cr/Ni <<0.1 and Cr/Co << 0.1 inconsistent with an iron meteoritic projectile.

2.3 Popigai (Siberia)

Concentrations of 98 µg/g for Ni, 26 µg/g for Co, 105 µg/g for Cr, and about 1 ng/g for Ir were measured in impact melt samples from the ~ 100 km diameter Popigai impact crater in Siberia [6]. The observed Cr, Ni and Co inter-element ratios do not support a chondrite as projectile type. At least 75% Cr and ~90% Co have to be subtracted as indigenous contribution to get chondritic Cr/Ni and Cr/Co ratios, an unrealistic scenario. Around 0.2 wt.% meteoritic contamination have been identified in homogeneous impact melt samples based on PGE concentrations (except Os) [6]. An L-chondrite was identified as the most likely Popigai impactor.

2.4 Morokweng (South Africa)

Ni, Co, Cr, and Ir are enriched in melt rock samples from the 70–80 km diameter Morokweng impact structure with average values of 780 µg/g for Ni, 50 µg/g for Co, 440 µg/g for Cr, and 32 ng/g for Ir [7]. However, a chondritic impactor contribution appears

to be inconsistent with observed Ni, Co and Cr inter-element ratios. Chromium isotope data have shown that about half of the chromium in the melt rocks is of extraterrestrial origin and consistent with an ordinary chondritic source [8]. Chondrite-normalized PGE abundance pattern of the impact melt rocks are flat and indicate the presence of about 2 to 5 wt% of a chondritic projectile component [7], most likely an L or LL-chondrite [9]. Independent confirmation of the impactor type came from a 25 cm meteorite clast in the impact melt rock of the Morokweng crater [10].

2.5 Clearwater East (Canada)

The 20 km diameter Clearwater East crater is most likely formed by a chondritic projectile based on Ni, Os, Ir [11], Ru, and Rh inter-element ratios. The melt rocks have the highest fraction of extraterrestrial component of any terrestrial impact structure (~7% of a CI-component). The melt samples have high concentrations of 1039 $\mu\text{g/g}$ Ni, 315 $\mu\text{g/g}$ Cr, and 52 $\mu\text{g/g}$ Co [11]. However, from observed Ni, Cr, and Co inter-element ratios a chondritic impactor contribution cannot be identified. At least contents of ≥ 55 $\mu\text{g/g}$ Cr have to be subtracted from the Ni-rich melt samples to get CI chondritic Cr/Ni and Cr/Co ratios.

3. Summary and Conclusions

The refractory highly siderophile elements Os, Ru, Ir, and Rh are abundant in most meteorites but depleted in Earth's crust, less mobile by secondary processes and therefore most reliable elements for projectile identification. Rh/Ir, Os/Ir, Ru/Ir and Ni/Ir ratios are particularly suitable for distinguishing different types of meteorite projectiles. Even in the case of low meteoritic contamination of about 0.1 wt.% CI chondrite allow the discrimination of the type of impactor, if mantle derived rocks as target rocks can be excluded. The identification of the projectile type is quite difficult, if not impossible, if the PGE derived from mantle rocks in impact melts. However, the Ru/Ir ratio of the Earth mantle of about 2 lies significantly above the Ru/Ir ratios of chondrite groups (Ru/Ir = 1.4 to 1.6) and thus the most reliable key ratio for identification [12].

References

- [1] Schmidt, G., Zhou, L., and Wasson J. T. (1993) Iridium anomaly associated with the Australasian tektite-producing impact: Masses of the impactor and of the Australasian tektites. *Geochimica et Cosmochimica Acta* 57, 4851-4859.
- [2] Folco, L., Glass, B.P., D'Orazio, M., and Rochette, P. (2018) Australasian microtektites: Impactor identification using Cr, Co and Ni ratios. *Geochimica et Cosmochimica Acta* 222, 550-568.
- [3] Goderis, S., Tagle, R., Fritz, J., Bartoschewitz, R., and Artemieva, N. (2017) On the nature of the Ni-rich component in splash-form Australasian tektites. *Geochimica et Cosmochimica Acta* 217, 28-50.
- [4] Shirai, N., Akhter R., and Ebihara, M. (2017) Platinum group elements in tektites: Identification of meteoritic components. *Lunar and Planetary Science XLVIII*.
- [5] Schmidt, G., Palme, H., and Kratz, K.-L. (1997) Highly siderophile elements (Re, Os, Ir, Ru, Rh, Pd, Au) in impact melts from three European craters (Sääksjärvi, Mien and Dellen): clues to the nature of the impacting bodies. *Geochimica et Cosmochimica Acta* 61, 2977-2987.
- [6] Tagle, R. and Claeys, P. (2005) An ordinary chondrite as impactor for the Popigai crater, Siberia. *Geochimica et Cosmochimica Acta* 69, 2877-2889.
- [7] Koeberl, C., Armstrong, R.A., and Reimold, W.U. (1997) Morokweng, South Africa: A large impact structure of Jurassic-Cretaceous boundary age. *Geology* 25, 731-734.
- [8] Koeberl, C., Peucker-Ehrenbrink, B., Reimold, W.U., Shukolyukov, A., and Lugmair, G.W. (2002) Comparison of Os and chromium isotopic methods for the detection of meteoritic components in impactites: Examples from the Morokweng and Vredefort impact structures, South Africa. *Geological Society of America Special Paper* 356.
- [9] McDonald, I., Andreoli, M.A.G., Hart, R.J., and Tredoux, M. (2001) Platinum-group elements in the Morokweng impact structure, South Africa: Evidence for the impact of a large ordinary chondrite projectile at the Jurassic-Cretaceous boundary. *Geochimica et Cosmochimica Acta* 65, 299-309.
- [10] Maier, W.D., Andreoli M.A.G., McDonald I., Higgins M. D., Boyce A. J., Shukolyukov A., Lugmair G. W., Ashwal L. D., Gräser P., Ripley E. M., and Hart R. J. (2006) Discovery of a 25-cm asteroid clast in the giant Morokweng impact crater, South Africa. *Nature* 441, 203-206.
- [11] Palme, H., Göbel, E., and Grieve, R. A. F. (1979) The distribution of volatile and siderophile elements in the impact melt of East Clearwater (Quebec). *Proc. Lunar Planet Sci. Conf. 10th*, 2465-2492.
- [12] Schmidt, G. (2004) Are high-temperature fractionations in the solar nebula preserved in highly siderophile element systematics of the Earth mantle? *Meteoritics and Planetary Science* 39, 1995-2007.