

MARSIS Observations of Phobos: Preliminary Results of the Search for Underground Reflectors

Sebastian Hegler (1), Dirk Plettemeier (1), Andrea Chicchetti (2), Carlo Nenna (3), Jeffrey J. Plaut (4), Raffaela Noschese (2), Anton B. Ivanov (5), Alain Herique (6), Roberto Orosei (7)

(1) Chair for RF Engineering, Dresden University of Technology, Germany, (2) Istituto di Astrofisica e Planetologia Spaziali (IAPS), Istituto Nazionale di Astrofisica (INAF), Rome, Italy, (3) Info Solution, Milan, Italy, (4) Jet Propulsion Laboratory, Pasadena, CA, USA, (5) Skolkovo Institute of Science and Technology, Moscow, Russia, (6) Université Grenoble Alpes, CNRS, IPAG, Grenoble, France, (7) Istituto di Radioastronomia, Istituto Nazionale di Astrofisica, Bologna, Italy

Abstract

In this paper, we present recent MARSIS observations of the Martian moon Phobos, considering the continued search for underground reflectors.

1. Introduction

The MARSIS radar instrument aboard MARS EXPRESS[1, 2] is a low frequency radar capable of operating at multiple bands with center frequencies of 1.8 MHz to 5 MHz. As described in [3], the instrument was re-programmed to be able to observe the Martian moon Phobos (see also [4] for a summary). Phobos is planned to be the target of several missions, including sample return missions.

In [5], we presented a simulation tool to compute an accurate backscattered radar echo from the surface of a body of arbitrary shape.

Recently, new geo-models of Phobos have been presented[6], derived from HRSC observations, represented as a spherical harmonics coefficient set. Using these new models, we re-computed the surface reflections in order to compare these with MARSIS measurements.

2 Results and discussion

Fig. 1 shows the simulation of the backscattered echo of orbit 4814 at 4 MHz center frequency. When comparing these with the on-board Doppler and SAR processed measurements performed by the MARSIS instrument shown in Fig. 2, it can be seen that echoes in the measurements are also present in the simulated radargram.

Fig. 3 shows echo n° 4 of Figs. 1 and 2 in an overlay. The positions were aligned so that the echo peaks

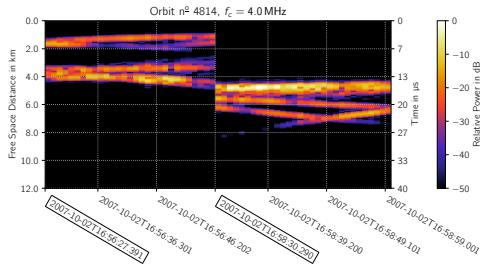
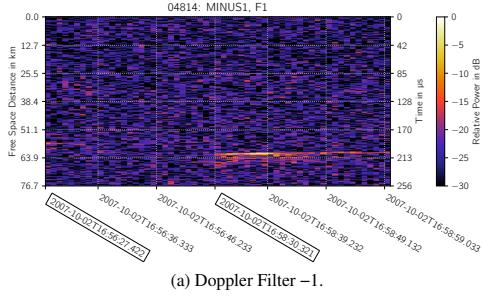
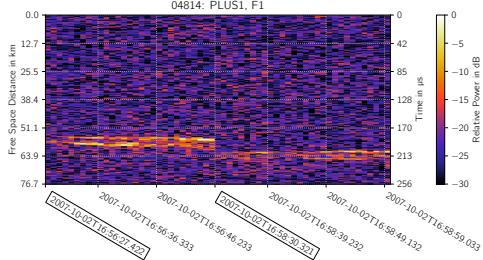
of measurements and simulation match. Signal powers were normalized separately: the simulation is normalized to the strongest echo, while the measured data were normalized to the strongest echo in *all* Doppler filter banks.

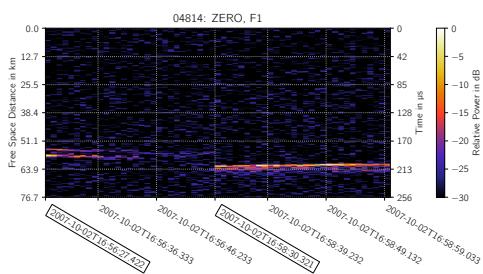
3 Conclusions

As of yet, in those MARSIS measurements we analyzed, the radar echoes could be attributed to surface backscattering. There are some hypotheses which might cause these phenomena. Firstly, with an assumed resolution of ≈ 60 m when assuming a permittivity of $\epsilon_r = 6.25$, surface regolith layers within that range are not separable. Secondly, primary layering might hinder deeper penetration if the material is very lossy. Lastly, multi-path propagation phenomena need to be investigated. Further investigation of the MARSIS data will give a better insight. Mapping the simulated and measured echoes to their respective surface locations will resolve ambiguities in the Doppler and SAR processed echoes.

References

- [1] R. Jordan, G. Picardi, J. Plaut et al., “The Mars express MARSIS sounder instrument,” *Planetary and Space Science*, vol. 57, no. 14-15, pp. 1975–1986, Dec. 2009.
- [2] R. Orosei, R. Jordan, D. Morgan, et al., “Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) after nine years of operation: A summary,” *Planetary and Space Science*, vol. 112, pp. 98–114, Jul. 2015.


Figure 1: Simulated Radargram at 4 MHz center frequency.

(a) Doppler Filter -1.

(b) Doppler Filter 0.

(c) Doppler Filter +1.

Figure 2: MARSIS Doppler processed measurements of Orbit 04814.

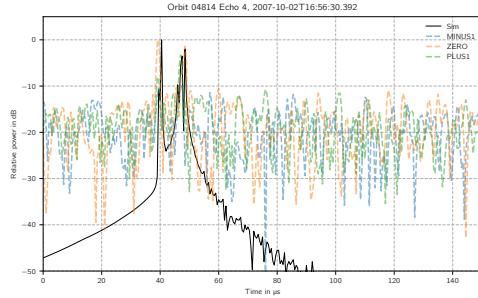


Figure 3: Time-shifted and power-normalized overlay of the measured Doppler filters and the simulation for Echo n° 4 of orbit 04814.

- [3] A. Cicchetti, C. Nenna, J. J. Plaut et al., “Observations of Phobos by the Mars Express radar MARSIS: Description of the detection techniques and preliminary results,” *Advances in Space Research*, vol. 60, no. 10, pp. 2289–2302, Nov. 2017.
- [4] O. Witasse, T. Duxbury, A. Chicarro, et al., “Mars Express investigations of Phobos and Deimos,” *Planetary and Space Science*, vol. 102, pp. 18–34, Nov. 2014.
- [5] D. Plettemeier, R. Hahnel, S. Hegler et al., “Numerical computation of radar echoes measured by MARSIS during phobos flybys,” in *2009 IEEE Radar Conference*, May 2009, pp. 1–6.
- [6] K. Willner, X. Shi, and J. Oberst, “Phobos’ shape and topography models,” *Planetary and Space Science*, vol. 102, pp. 51–59, Nov. 2014.