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1. Introduction
1.1. Observational background
Jupiter’s tropospheric dynamics is characterised by the
presence of alternately prograde and retrograde jet
streams whose speeds are included between 10 and
150 m s−1 and which delimit zones and belts, where
wind shear is respectively anticyclonic and cyclonic
[10]. The equatorial jet is superrotating with a velocity
equal to 100 m s−1. Some large vorticies like the Great
Red Spot (GRS) and the White Ovals can be observed
(from 103 km large to 104 by 2 104 km for the GRS),
as well as convective storms and lightnings, particu-
larly studied by Galileo [8] and Cassini [3] missions.
These storms are typically few thousands kilometers
large and occur almost exclusively in belts but since
the Juno mission reached Jupiter, we can see some
features that look like small (100 km large) convec-
tive clouds in zones. The Juno mission has especially
revealed Jupiter turbulent poles and polar clusters of
cyclones [1].

1.2. Modeling context
To model solar system gas giant atmosphere, there are
two kind of models : deep models (for example [5])
and shallow models. Both imply an inverse cascade of
energy from small-scale eddies to large-scale jets due
to the fast rotation rate of these planets. The difference
is the perturbation source: magnetohydrodynamics ef-
fects at great depth in the first case, baroclinic insta-
bilities or convection in the second one. We place our-
selves in the second case and try to reproduce jovian
tropospheric main features.

2. Model
For that, we use a gas giant General Circulation Model
(GCM) which contains a dynamical core and several
physical parametrizations. The dynamical core DY-
NAMICO solves atmospheric primitive equations un-
der the shallow water and hydrostatic assumptions on
an icosahedral grid [2] to ensure good energy and mo-
mentum conservation as good scalability properties

for massively parallel computing. The main physical
parametrization is the radiative model adapted from
Saturn to Jupiter [4], which uses the k-distribution
method. A Rayleigh friction is added at the base of
the model to parametrize a deeper drag due to magne-
tohydrodynamics effects [9]. Eventually, to model the
troposphere, we need to include the stratosphere in our
GCM in order to model correctly the tropopause and
avoid side effects.

3. Results and possibilities
In high resolution simulations (0.5 degree resolution
in longitude and latitude), we can see about ten jets
which are alternately prograde and retrograde (cf.
figures 1 and 2). Their speed has the good order of
magnitude in absolute value but the equator show a
subrotation instead of a superrotation. But above all
they are too broad and too few and their migration
toward high latitudes, which takes place during the
first years of the simulation, reduces this number to
height. We investigate these issues and will discuss
about the results during the conference.
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Figure 1: Zonal mean zonal wind (in m s−1) in func-
tion of pressure and latitude after 4 simulated jovian
years with temperature contours (in K).
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One possibility to explain the differences between sim-
ulations and observations is the absence of convection
parametrization. Indeed, convective activity is sup-
posed to be one of the large-scale circulation energy
sources and able to modify jets width and speed [7].
Therefore we are replacing the simple convective ad-
justment by a moist convection parametrization. We
chose the thermal plume model originally developped
in LMD [6] to model Earth boundary-layer convec-
tion and adapted to moist convection ([11], [12]). The
choice relevance and the effects of the parametrization
on the simulated large-scale circulation will be dis-
cussed during the conference.
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Figure 2: Zonal wind speed (in m/s) at the 1-bar pres-
sure level after 1 (top) and 4 (bottom) simulated jovian
years.
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