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Abstract

A recently popular way to study the internal properties
and structure of “rubble pile” asteroids is to study them
as gravitational aggregates, through numerical N-body
simulations. These methods are suitable to reproduce
aggregation scenarios after disruption and allow the
study of the dynamical and collisional evolution of
fragments up to the formation of a stable aggregate or
to their dispersion. This work presents a numerical im-
plementation of the gravitational N-body problem with
contact dynamics between non-spherically shaped ri-
gid bodies. The work builds up on a previous imple-
mentation of the code and extends its capabilities. The
number of bodies handled is significantly increased
through the use of a CUDA/GPU-parallel octree struc-
ture. The main features of the code are described and
its performance are compared against CPU-parallel ar-
chitectures and classical direct N? integration. Preli-
minary results and examples of scenarios that could
benefit from such implementation are presented, with
application to asteroid gravitational aggregation pro-
blems.

1. Introduction

The study of aggregation phenomena mostly relies on
codes optimized for a large number of mutually in-
teracting particles, including parallel N-body tree co-
des [9, 13, 12, 11], hybrid codes [1], adaptive algo-
rithms of optimal orders [10], systolic algorithms [5],
or more generally symplectic codes [14, 6, 4]. These
handle a large number of particles regardless of their
individual shape and rigid body motion. Although not
relevant for many applications, this limitation could be
relevant for the case of asteroids [8], as suggested by
results of granular dynamics in terrestrial engineering
applications. The latter are commonly studied using
multi-body codes, able to simulate contact interacti-
ons between a large number of complex-shaped bo-
dies, but not suitable for gravitational dynamics. The
code presented here is developed to joint the advanta-

ges of both classes of codes into a single implementa-
tion, to reproduce N-body gravitational dynamics bet-
ween a large number of complex-shaped rigid bodies.

2. Numerical implementation

This work builds on a previous implementation of the
code [7] and extends its capabilities by including a pa-
rallel CUDA-GPU octree structure. The following pa-
ragraphs briefly summarize the main features of the
code.

2.1. Contact dynamics

Concerning collision and contact dynamics, the N par-
ticles are treated as three-dimensional rigid bodies of
arbitrary shape. Each body possesses rotational de-
grees of freedom, a tensor of inertia and a mesh to be
used for collision detection. In our implementation,
bodies can collide and re-bounce in collision types
ranging from fully elastic to complete inelastic, depen-
ding on the selected restitution coefficient. Because
we assume the rigid nature of bodies, contact forces
are discontinuous and lead to a non-smooth constraint-
based problem. In addition, the code provides the
choice to select smooth penalty-based (soft-body) con-
tact solver, which is best suited for high velocity im-
pact dynamics. The interested reader can refer to [7]
for further details.

2.2. GPU-parallel octree structure

Compared to direct N-body integrators, algorithms
based on tree data structures rely on more dynamic
and adaptive computations that allow for a signifi-
cant reduction of time complexity from O(N?) up to
O(N log(N)). Our code implements the Barnes-Hut
algorithm [2], which groups particles using a hierar-
chy of cube structures. A node in the algorithm corre-
sponds to a cube in physical space. Because of the use
of octrees, each node has eight child nodes obtained
by a simple homogeneous spatial subdivision perfor-
med along the three principal axis of the system. The



tree is therefore built by recursive sub-division until
each node of the tree contains zero or one particle. The
structure is adaptive, implying that the size of the tree
is not fixed but comes as a result of the repartition of
the particles in the 3D space.

The implementation of the Barnes-Hut algorithm on
a GPU using CUDA language is inspired by the work
of Burtscher and Pingali [3]. The physical domain is
divided into sub-domains and the bodies are grouped
following the octree structure. The numerical tasks
to follow the Barnes-Hut algorithm have been divided
among five kernels, to be executed sequentially on the
GPU.

3. Numerical simulations

Numerical simulations are performed under many de-
grees of freedom. To reproduce asteroid aggregation
scenarios, it is important to carefully select the phy-
sical properties of the N bodies and their initial dy-
namics. Initial conditions play a crucial role to the
formation of the aggregates and their properties. As
mentioned, bodies are modeled as complex-shaped bo-
dies and their initial dynamical state includes rela-
tive position and velocity of their center of mass, an-
gular position and spin rate. Other relevant simula-
tion parameters include integration time step, to be
chosen according to the characteristic time of dyna-
mics [7]. These include gravitational dynamics (slow)
and contact/collision dynamics (fast). Due to a more
restrictive requirement, the latest drive the selection of
the time step, which is tuned according to the fastest
dynamics of the system. The number of bodies (10*
in our simulations), their characteristic size and max-
imum initial distance between them are also key as-
pects. The physical properties of fragments (density
and surface properties) are also to be chosen. Figure 1
shows an example of aggregation process.

4. Summary and Conclusions

The work presents a GPU-parallel numerical code for
the study of collisional and gravitational evolution of
“rubble pile” asteroids. At this preliminary stage, the
code is able to handle up to 10* complex-shaped inte-
racting bodies. Preliminary results on scenarios simu-
lated are very promising and hint a good capability of
the code to reproduce asteroid aggregation scenarios.

Figure 1: Aggregation sequence example with 1000
bodies
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