

Lunar Science, Volatiles Prospecting and In-Situ Resource Utilisation: Synergistic Science and Exploration

S. J. Barber; F. Abernethy, M. Anand, V. Levin-Prabhu, S. Lim, A.D. Morse, J. Mortimer, C. Pitcher, H. Sargeant, S. Sheridan, A. Verchovsky, I.P. Wright

The Open University, Milton Keynes, UK. simeon.barber@open.ac.uk

Abstract

A host of new missions to the surface of the Moon are in preparation internationally. A key objective is to perform in-situ investigations of putative water ice and other volatiles, and determine their abundance and extractability for future In-Situ Resource Utilisation (ISRU). This paper describes how a range of existing and developing technologies and techniques may be applied for the benefit of lunar science and exploration.

1. Introduction

The Open University (OU) has been a key player in lunar science since the Apollo era, with activities spanning from analysis of returned samples to in-situ instrumentation, and from scientific- to exploration-motivated research in volatiles and other potential resources in and on the Moon [Anand, 2010; Anand et al., 2012; 2014].

Initial interests were in the development and application of specialised mass spectrometers for stable isotopic studies of Apollo, Luna and meteorite samples. As a natural progression, OU since started a programme of miniaturising these instruments for flight on major space missions including the Rosetta comet investigation [Wright et al., 2015; Morse et al. 2015] and the ExoMars 2020 Surface Platform.

Investigations of lunar volatiles, whether motivated by scientific or exploration objectives, can be addressed through a combination of the above experience and capabilities. The miniature science laboratory ProSPA [Barber et al., 2018a] is being developed for the prospecting and analysis of lunar ices and chemically/physically-sorbed volatiles within the PROSPECT package for the Luna-27 lander (Roscosmos/ESA). It combines elements of

earlier space instruments to replicate laboratory-based analytical protocols that have previously been applied to returned lunar samples and meteorites. These experiments can therefore be performed in-situ on the Moon on freshly drilled samples in new locations, with the results being valuable both in themselves and as context for the wealth of existing sample analysis data in the literature.

Further instrument and mission concepts are in development for science and resource prospecting from rovers [Biswas et al., 2018] and penetrators [Barber et al., 2018b].

OU is also preparing for the transition from prospecting for lunar resources, to developing a new sustainable mode of space exploration based on the utilisation of local resources (ISRU). Activities in this area range from chemical processes for the extraction of oxygen from lunar regolith [Sargeant et al., 2018] to microwave processing for additive manufacturing (3D-printing) of lunar materials [Lim et al., 2017; Srivastava et al., 2016].

This presentation will describe current and developing capabilities, interests and aspirations and how these are being applied in the context of European and international plans for lunar science and exploration. The potential synergies between in situ science and laboratory analysis of new returned samples will be explored, with a view to science and exploration advancing together for mutual benefit.

References

[1] Anand, Mahesh (2010). Lunar water: a brief review. *Earth Moon and Planets*, 107(1) pp. 65–73.

[2] Anand, M.; Crawford, I. A.; Balat-Pichelin, M.; Abanades, S.; van Westrenen, W.; Péraudeau, G.; Jaumann, R. and Seboldt, W. (2012). A brief review of chemical and mineralogical resources on the Moon and likely initial in situ resource utilization (ISRU) applications. *PSS*, 74(1) pp. 42–48.

[3] Anand, Mahesh; Tartèse, Romain and Barnes, Jessica (2014). Understanding the origin and evolution of water in the Moon through lunar sample studies. *Phil. Trans. A*, 372(2024)

[4] Barber, S. J. et al. (2018a) ProSPA: Analysis of Lunar Polar Volatiles and ISRU Demonstration on the Moon, LPSC 2018, The Woodlands, Texas, <https://www.hou.usra.edu/meetings/lpsc2018/pdf/2172.pdf> .

[5] Barber, S. J. et al. (2018b) L-DART: a Penetrator Mission for Lunar Permanently Shadowed Regions, LPSC 2018, The Woodlands, Texas, <https://www.hou.usra.edu/meetings/lpsc2018/pdf/2941.pdf>

[6] Biswas, J. et al. (2018) Mobile In-Situ Exploration Of Lunar Volatiles With The LVS On LUVMI, European Lunar Symposium, https://els2018.arc.nasa.gov/downloads/ELS_2018_Abstract_Booklet_08052018.pdf

[7] Lim, S., Levin Prabhu, V., Anand, M., Taylor, L., (2017), “Extra-terrestrial construction processes - advancements, opportunities and challenges”, *Advances in Space Research Journal*, Vol 60, Issue 7, pp. 1413-1429. <https://dx.doi.org/10.1016/j.asr.2017.06.038> Corrigendum: <https://dx.doi.org/10.1016/j.asr.2018.03.022>

[8] Morse, A.; Moussis, O.; Sheridan, S.; Morgan, G.; Andrews, D.; Barber, S. and Wright, I. (2015). Low CO/CO₂ ratios of comet 67P measured at the Abydos landing site by the Ptolemy mass spectrometer. *Astronomy & Astrophysics*, 583, article no. A42

[9] Sargeant, H. M. et al. Hydrogen reduction of ilmenite in a static system for a lunar ISRU demonstration. European Lunar Symposium, https://els2018.arc.nasa.gov/downloads/ELS_2018_Abstract_Booklet_08052018.pdf

[10] Srivastava, V., Lim, S., Anand, M., (2016), “Microwave processing of lunar soil for supporting longer-term surface exploration on the Moon”, *Special Issues*,

[11] Wright, I. P.; Sheridan, S.; Barber, S. J.; Morgan, G. H.; Andrews, D. J. and Morse, A. D. (2015). CHO-bearing organic compounds at the surface of 67P/Churyumov-Gerasimenko revealed by Ptolemy. *Science*, 349(6247)