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Abstract 

Small (sub-km) crater size-frequency distributions are 

the standard metric for dating very young surfaces on 

the Martian surface, because of the lack of large, 

infrequent impact events and the unavailability of 

surface samples. However, small crater population 

statistics are poorly understood and make accurate 

absolute dating of young surfaces impossible. This is 

because several unknown factors  which affect the 

crater production and erosion rates – such as 

atmospheric filtering, secondary cratering and partial 

resurfacing [1]. Constraining these factors, where 

possible, is important if we are to understand the 

recent history of the Martian surface. We present an 

algorithm capable of detecting small crater candidates 

in high-resolution visible imagery of the Martian 

surface. The algorithm classifies craters with a state-

of-the-art F1-score (91%) when compared with other 

algorithms on the same dataset [2-4]. We use this 

alongside a mean-shift clustering algorithm to detect 

crater candidates in an extended HRSC image with 

near 100% recall and roughly 50% precision. The 

candidates can then be marked rapidly by a human 

expert, greatly increasing the speed of small crater 

counting exercises, when compared to traditional 

manual marking. The detection algorithm’s 

performance is shown in both familiar (relative to the 

training set) and unfamiliar terrain, which we believe 

demonstrates that it is a viable tool for accurate and 

quick crater counting on Mars. 

1. Introduction 

Historically, CSFD's have been constructed manually 

by human experts [5]. We believe this is primarily due 

to two reasons: 1) human experts are thought to be the 

most accurate crater detector, given that we have no 

higher authority by which to check our answers; 2) 

Large craters have been shown to be of far more 

immediate use in age-dating, and are more easily 

countable by humans because there are many fewer of 

them than sub-km ones. 

 

Small crater statistics are not well understood. This is 

because of various poorly constrained stochastic 

processes that effect both the production and erosion 

of small craters [1]. These small craters reach an 

equilibrium population distribution quickly, and 

therefore many surfaces have a stable number of small 

craters which cannot inform us of the surface age. 

With substantial amounts of data, the processes 

effecting production and erosion may be able to be 

isolated in these equilibrium populations, however a 

very large count of small Martian craters has never 

been conducted. 

 

Figure 1: A flowchart of the algorithm, showing 

feature extraction, classification and clustering. 
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2. Method 

Our algorithm comprises three distinct stages (see 

Figure 1). First, image patches are transformed by a 4-

layer convolutional neural network into a set of 

features. Secondly, these features are used to classify 

the image patch as a crater or non-crater, by a neural 

network. A second neural network is then used on the 

crater candidates to estimate position and size within 

the image. Finally, many detections of the same crater 

in the extended scene are clustered using the mean-

shift algorithm. 

The convolutional network is initially trained in an 

unsupervised fashion, using an autoencoder 

architecture. The training data used is random patches 

of Martian terrain imagery from HRSC nd-4 products. 

After the unsupervised learning, both the 

convolutional network and the neural networks are 

trained using a dataset made available by Cohen et al. 

(link) in the Nanedi Valles region. We extend this 

dataset with additions from different terrain, and use 

data augmentation to increase the number of training 

examples. 

3. Results 

Our algorithm performs at the state-of-the-art when 

compared to other methods [2],[3],[4] using the same 

dataset. We perform with a 91% F1-score in a 

classification scenario, which will improve with more 

training data (Figure 2).  In a detection scenario across 

an extended scene, the algorithm can be used to obtain 

crater candidates for expert marking. In this mode, the 

detection algorithm has a recall at or near to 100% and 

a precision of around 50%. This leads to a huge 

decrease in the time spent manually counting craters, 

given that errors of omission (the most time-

consuming to correct) are negligible. Our detection 

algorithm shows robustness to a variety of terrain 

types, with reliable performance in areas that aren’t 

represented in the training set. Using this tool, we aim 

to produce a large catalogue of small Martian craters, 

which will be used to constrain the effects of 

secondary cratering, erosion rates and partial 

resurfacing. 

 

Figure 2: The classification performance (F1-score) 

of the algorithm, using different amounts of the 

available training set data. This is a clear indication 

that more data will increase performance. 
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