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Abstract 

We present a preliminary study to focus on the 

effects of the extreme conditions occurring on 

Mercury on minerals analogs, in particular taking 

into account the strong variations of temperature. 

 

1. Introduction 

A major result of the MESSENGER mission was 

to reveal the volcanic hermean surface poor in iron 

[1], but unexpectedly rich in volatile elements [2]. 

The high abundance of sulfur on Mercury is 

particularly interesting, because its sublimation is 

suggested to trigger the formation of hollows [3]. 

Laboratory experiments whose aim is to study the 

evolution of sulfides in the conditions of Mercury's 

surface are in progress [4]. However, to understand 

the spectral properties of the surface need to consider 

how minerals can be affected by the hermean 

environment. The effects of temperature and space 

weathering on minerals have been already studied 

[5,6] but rarely on Mercury’s analogs [7]. 

 

2. Samples and setups 

We began our activities measuring a loose 

powder (75-100 µm) of plagioclase Pl3 [8] and 5 mm 

diameter pellets with the same plagioclase powder. 

To simulate the hermean high T conditions, we used 

a LINKAM (nitrogen purged) cell to heat and cool 

our samples which allows to measure VIS-IR (0.4-15 

µm) spectra as a function of temperature (298-623K 

in our case). Finally, we used two setups for our 

spectroscopic analyses: 1) a visible-near infrared 

spectrometer Maya2000 Pro coupled with a 

microscope through optical fibers; 2) a near to mid 

infrared spectrometer coupled with an Agilent 

microscope, installed at the SMIS (Spectroscopy and 

Microscopy in the Infrared using Synchrotron) 

beamline of the synchrotron SOLEIL. 
 

3. Analytical method 

In a typical heating experiment, the powder or the 

pellet was placed inside the purged heating cell and 

reflectance spectra were recorded every 50K of 

increasing temperature. The heating ramp was 

5K/min, with a 10-20 min plateau to record the 

spectrum at a given temperature. A similar cooling 

cycle was then performed and spectra were measured 

as a function of decreasing temperature from 623K to 

302K. 

 

4. Preliminary results 

Figure 1 shows the thermal infrared where the 

Christiansen feature (CF) and the Reststrahlen 

absorption bands (RB) of silicates are studied. 

A preliminary qualitative analysis showed a shift 

towards greater wavelengths for several RB peaks 

(e.g. at ~9.0 and ~10.5 µm) as a function of 

increasing T, whereas the CF does not shift. A more 

quantitative analysis will be presented and discussed. 
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Fig. 1. Mid infrared spectra of a pellet of plagioclase taken 

at different temperatures (from 298 K to 623 K). 

 

 
 

5. Future activities 

In the next future, we plan to perform more 

heating experiments to study the evolution of natural 

minerals, as well as synthetic Mercury-like glasses 

[7] at temperature during day time. In addition, we 

consider to take measurements in cold conditions as 

it is the case on the floor of polar craters of Mercury. 

Finally, we plan to irradiate our samples with 40 keV 

ion beams with different fluences as a simulation of 

slow solar wind irradiation of Mercury. 
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