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Abstract

Meteorites are fragments from small bodies (mostly
asteroids) in the early solar system. These
planetesimals formed within a few Ma, before the
solar nebula was dissipated. Radioisotope dating
allows to infer a detailed insight into the chronology
of formation of the first solids, meteorite parent body
formation and their thermal evolution. While
differentiation was completed within a few Ma,
cooling of both undifferentiated chondrites and
differentiated parent bodies took place over tens of
Ma.

1. Introduction

Meteorites contain both decay products of long-lived
nuclides (282%5-206207pp, 40K4Ar [1,2]) and also
short-lived radionuclides (***Xe from ®I; Ty,=16
Myr [3], excess 2Mg from %Al; T1,=0.73 Myr [4],
58Cr from %3Mn; T12=3.7 Myr [5], 82Hf from %W
T12=9 Myr [6,7]). Radioisotope dating based on
these nuclides provide a framework for the formation
of solids in the early solar system. Particular short-
lived nuclides can provide a high resolution early
solar system chronology, if short-lived isotope
chronometries are calibrated against each other using
several tie points (e.g., CAls, some H chondrites,
Acapulco). Moreover, it is possible to derive
planetesimal formation timescales by constraints
derived from 26Al heating of meteorite parent bodies
[2,8]. Conditions of formation of the first solids in
the solar nebula varied - most probably due to p,T
differences imposed by the early sun - with radial
distance and/or time, and caused the compositional
variety of planetesimals concerning refractory and
volatile elements, metals, and Mg-rich silicates [8,9].

2. Chronology of formation of
solids and planetesimals

The oldest solids in the early solar system (c. 4567
Ma old) are cm-sized refractory Ca,Al rich inclusions
(CAls) in meteorites. Abundant spherical chondrules
are about 2-4 Ma younger. Radiometric dating of
chondrules from different meteorite classes and
formation time scales inferred by 26Al heating
(Figure 1) define a sequence of formation of ordinary
chondrites (L and LL type), and carbonaceous CO
and CR chondrites about 2-4 Ma after CAls. These
data and chemical composition - particular
chondrule-matrix complementarity — suggest that
individual planetesimals grew rapidly in the asteroid
belt (within < 1 Ma), but different planetesimals
formed over a time interval of 4 million years [2,7,8],
well within the lifetime of protoplanetary dust disks
inferred  from  extrasolar  systems  [10,11].
Planetesimals forming earlier than undifferentiated
chondrites were even more strongly heated by decay
heat of short-lived nuclides, primarily 2Al [2]. This
caused melting and differentiation in planetesimals
that formed within < 2 Ma after CAls and led to the
formation of iron cores and basaltic rocks, while
chondritic planetesimals that accreted later remained
undifferentiated [2,7,8]. As most chondrules were
immediately consumed in accreting planetesimals,
they were only preserved in unmelted chondritic
parent bodies and their age distribution is biased to
the formation time interval of chondrites 2-4 Ma after
CAIs [8].

3. Conclusions and open questions

The formation of solids in the early solar system
(CAls, chondrules, planetesimals and terrestrial
planets) are still insufficiently linked to
astrophysically constrained processes like early
protostellar activity, disk dissipation, formation and



migration of gas planets interacting with young disks
[10,11]. Models of Earth and Mars formation based
on B2Hf 182\ core formation ages infer the presence
of planetary embryos of 60% the size of Mars after 2-
4 Ma. This indicates the early presence of Jupiter to
effectively prevent the formation of a proto-planet in
the asteroid belt. Planetesimal formation in the
asteroid belt and the terrestrial planet formation zone
at <3 Ma after CAls was likely accompanied by inner
disk clearing accompanied by solar wind irradiation
and likely volatile element depletion of terrestrial —
and partly asteroidal - precursor planetesimals [12].
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