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Gradual desiccation of rocky protoplanets from 2°Al-heating
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Abstract

The formation and distribution of Earth-like planets
remains poorly constrained. However, stochasticity
during accretion and the variety of exoplanet compo-
sitions favor rocky worlds covered in thick volatile ice
layers as the dominant family of terrestrial analogues
[1], deviating from the water-poor inner-Solar system
planets. Here, we demonstrate the power of 26Al, a
short-lived radioisotope abundant in the early Solar
system, to control the water content of terrestrial ex-
oplanets. Using numerical models of planet forma-
tion, evolution, and interior structure [2], we gener-
ate synthetic planet populations that are subject to a
varying degree of 26Al-heating during accretion [3].
We show that planet bulk water fraction and radius
are anti-correlated with the host system’s 26Al levels
(Fig. 1). This yields a system-wide correlation [4] of
bulk abundances, and is consistent with the location-
independent scarcity of water within the TRAPPIST-1
planets [5]. The generic sensitivity of exoplanet ob-
servables on primordial 26Al inferred from our mod-
els suggests two distinct classes of rocky exoplanets:
high-26 Al systems form small, water-depleted planets,
those devoid of 26 Al form ocean worlds, with the mean
planet radii deviating by up to ~10%.
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Figure 1: (a) Water retention in planetesimals subject
to a varying degree of 26Al heating. (b) Bulk planet
water abundances fy,0 in exoplanet populations with
Mpianet = 0.1-10 Mgarn and fr,0 > 0, formed with
fixed 25Aly and planetesimal radius 7pits.



