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Abstract 
We show that coesite in shocked porous sandstones 
forms through direct subsolidus transformation from 
quartz, in contrast to what suggested for crystalline 
quartz-bearing targets. This work documents the role 
of pore collapse in producing localized pressure-
temperature-time gradients in shocked porous targets, 
as predicted by numerical models in the literature, 
and raises the question of the kinetics of the direct 
quartz-coesite transformation induced by shock. 

1. Introduction 
The presence of coesite in quartz-bearing target rocks 
experiencing shock conditions beyond the limits of 
the coesite stability field is a controversial issue [1, 2, 
3, 4]. Coesite was identified in shocked sandstone 
ejecta from the 45-m-diameter, less than 5,000 years 
old Kamil Crater in Egypt [5, 6]. The exceptional 
state of preservation of Kamil Crater and, in 
particular, the lack of evidence for post-shock 
thermal overprint and alteration due to hydrothermal 
activity typically observed in shock metamorphic 
rocks from larger impact structures [e.g., 4, 7], 
prompted us to test current models for formation of 
coesite in the shocked sandstone ejecta through a 
combined scanning electron microscopy, Raman 
spectroscopy and electron diffraction microstructural 
study. 

2. Results 
The shocked sandstone studied in this work is a 
medium-grained quartzarenite dominated by heavily 
shocked, equigranular quartz grains with an average 
grain size of 1 mm (~78 vol%) and including 
accessory tourmaline and zircon [6]. Intergranular 

veins and pockets (up to 1 mm across) of silica glass 
contain microcrystalline coesite. These domains are 
microstructurally analogous to the so-called 
symplectic regions first described in the Coconino 
Sandstones from the Barringer Crater, USA [1]. 
Orientations and frequency of PDF in shocked quartz 
({10-13}, 23%, and {10-12}, 14% [6]) and amount 
of silica glass (~22 vol%) indicate shock pressures of 
20- 25 GPa [8, 9]. 

Intergranular symplectic regions show 
microstructural zoning. From the core of the quartz 
crystals to the core of the symplectic regions, we can 
distinguish a "quartz zone", a "coesite zone" and a 
"silica glass" zone. The quartz zone consists of PDF-
bearing shocked quartz. The coesite zone, up to 
several tens of µm in thickness, typically consists of 
polycrystalline aggregates of micro-to-nanocrystals 
(<5 µm) coesite set in pure silica glass, i.e. 
lechatelierite. Coesite shows fine polysynthetic 
twinning parallel to the (010) plane. Polycrystalline 
aggregates arranged along planes that are nearly 
parallel to PDF of the quartz crystals in the adjacent 
quartz zone consists of fine coesite plus quartz 
intergrowths. This indicates topotactic growth of 
coesite at the expense of the PDF-bearing quartz 
crystals. Flame-like corrosion textures at the margins 
of the coesite aggregates indicate subsequent melting 
of the pre-existing crystalline silica phases. The silica 
glass zone consists of homogeneous lechatelierite 
with usually one central bubble up to several tens of 
µm across. 

3. Discussion 
Petrographic data confirm that, in porous 
sedimentary rocks, coesite forms locally in 
symplectic regions, as reported in the literature from 
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other impact structures (e.g., Coconino Sandstone 
from Barringer Crater [1]). This localization and the 
petrographic zoning of the symplectic regions attests 
to significant heterogeneity in the space-time 
distribution of P-T conditions within the rock. These 
gradients are associated with shock wave 
reverberations due to pore collapse in shocked porous 
sedimentary rocks, as derived from recent numerical 
simulation of shock-induced pore collapse by [10]. 

The most straightforward explanation for the 
topotactic growth of coesite at the expense of the 
PDF-bearing quartz crystals is direct quartz-coesite 
subsolidus transformation. Shock-front reverberation 
caused by the presence of pores and discontinuities in 
the shocked material could last long enough to allow 
the transformation of quartz into coesite. This 
transformation may be energetically and 
topologically facilitated by the ubiquitous and 
pervasive twinning in shocked coesite. Although 
such subsolidus transformation has been recently 
hypothesized for impact coesite in shock veins of 
metaquartzites from the ~300-km-diameter 
Paleoproterozoic Vredefort impact structure [11], this 
mechanism is in contrast with what proposed for 
crystalline targets, i.e. that coesite forms during 
shock unloading through crystallization from a silica 
shock melt [e.g. 2, 4] or subsolidus nucleation from 
highly densified diaplectic silica glass [3]. These 
differences suggests that different coesite formation 
mechanisms act in different targets. 

4. Conclusions 
Mineralogical and petrographic data from shocked 
Kamil Crater sandstones thus document the effective 
role of pore collapse in producing heterogeneous 
pressure-temperature-time (P-T-t) distributions in 
porous targets, as predicted by numerical models in 
the literature. This is relevant in defining of the P-T-t 
paths of shock metamorphic rocks, and therefore the 
shock classification of impactites and impact 
scenarios. 
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