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Abstract

Through the data acquired by the OSIRIS camera [1],
the surface of 67P/Churyumov-Gerasimenko comet
(hereafter 67P) appears as a collection of
morphological contrasts, with a huge variety of
terrains and geological features [2]. The presence of
large boulders is one of the ubiquitous, and most
important morphological features of 67P: such
features can be found both isolated and/or in cluster
and their distributions depend on the formation and
evolution they have undergone [3]. The analysis of
thermal properties of boulders on a comet is pivotal in
order to add relevant information to the composition
and the structure of the comet itself. Thermal stresses
are driven by thermal expansion and contraction of
the cometary material too, this a natural tendency of
the material in changing its shape, area and volume in
response to thermal gradient. Both the expansion and
contraction are elastic processes, but they are not
enough to induce stresses in the material. Stress can
be induced if the expansion or contraction of the
material are constrained, or there are different layers
of the material bonded each other that are expanding
or contracting at a different rate. Furthermore, when a
comet approaches the Sun, temperature increases and
ices sublimate, making boulders unstable and
vulnerable. These stresses can lead to the
fragmentation of boulders, as thermally rock
breakdown is thought to be an active process in the
Solar System [4], contributing to the erosion of a
cometary or planetary surfaces.

1. Method and preliminary results

In this study we modeled the thermal stresses
occurring on boulders located in the Imhotep region
of 67P comet, with the aim to i) analyze the heat
transfer in airless rock, ii) investigate solid
mechanics properties, and iii) quantify stress values
beyond which a material failure occurs. Our first
approximation is that we considered spherical
boulders resting on the surface of the comet, in which
we can find two different geometries: the first
consists of a sphere made by water or CO2 ice mixed
by material in form of agglomerated particulates,
surrounded by a frost layer. In the second model, the
boulder is described as a sphere made by a porous
medium whose icy part is sublimated, leaving some
residual gases trapped in the porous structure [5].

Figure 1: OSIRIS NAC image taken on 29
September 2014. The scale of the image is 0.35 m/px.
This area is located in the Imhotep region [2].



Regarding the choice of materials, we decided to
consider water and dry ice, dunite and graphite as
solid part. As proposed by Cheng, S. C. et al. (1969)
[6], we calculated the thermal conductivity and
thermal inertia for each case. Figure 2 shows an
example of the calculated thermal conductivity for a
boulder made by dunite as a continuous material and
water ice as discontinuous material. We performed
our calculations with a temperature ranging between
150 and 230 K. Then, we calculated the relative
thermal inertia values on all cases. After calculating
the values of thermal conductivity and thermal inertia,
we used these values as properties to be assigned to
the two geometries in order to simulate the heat
propagation, the temperature variation, and the
behavior of thermal stress inside the different
boulders. We performed this analysis using COMSOL
Multiphysics, a 3D Finite Element simulator,
calculating the position of the Sun with respect to the
selected region of the 67P using the NAIF SPICE
Toolkit. After testing the model, we performed the
same analysis for boulders with different shapes,
varying the values of compactness, circularity,
convexity, and complexity, in order to correlate the
stress trend with the shape variation.
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Figure 2: Thermal conductivity of a boulder made by
dunite as a continuous phase, and water ice as
discontinuous phase. Each percentage Pd represents
the amount of discontinuous material dispersed in the
continuous one.

Our preliminary results show that the establishment
of a daily thermal gradient leads to very high thermal
stress concentrations, having in some situations
temperature variations of the order of hundred
Kelvin. Moreover, the analysis performed for

boulders with different shapes shows how corners
and edges are sensitive parts to thermal fatigue.
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