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Abstract

Atmospheric retrievals on exoplanets involve usually
computationally intensive Bayesian methods. The
choice of the fitting parameters bounds are often
leaded by physical constraints and and the user ex-
perience. We introduce ExoGAN, a new generation
artificial intelligence able to recognise molecular fea-
tures, abundances and atmospheric physical parame-
ters using unsupervised learning. ExoGAN will re-
turn a probability distribution for each parameters that
can be used either as a final atmospheric analysis or as
prior distribution for a subsequent Bayesian model.

1. Introduction

Artificial Intelligence has been used extensively in the
last few years in many different fields. The use of Ar-
tificial Neural Networks in Astrophysics is a relatively
young but the growing interest of the scientific com-
munity towards this tool will increase dramatically
within the next decade. Independently on the research
field, Neural Networks can be used to understand and
describe relatively complex structures and behaviour
in a wide variety of dataset. Waldmann (2016) is a pi-
oneering work who apply a deep-belief neural network
(DBN) to recognize the atmospheric features on an
exoplanetary transmission spectrum. Rodriguez et al.
(2018) developed a tool able learn models that can ef-
ficiently generate new, physically realistic realizations
of the cosmic web using generative networks. In the
exoplanetary field, and more in general, in the astro-
physics field, the use of GANs is still a new method
able to solve computationally intensive problems. In
our work we suggest a more advanced and up-to-date
unsupervised algorithm to understand and reliably re-
produce the atmosphere of an exoplanets. In particular
we used a Deep Convolutional Generative Adversar-
ial Network (DCGAN) introduced for the first time by
Goodfellow et al. (2014). We introduce ExoGAN, a
DCGAN able to recognise spectral feature from exo-
planetary spectra and return a detailed chemical and

physical analysis in a completely new way, reducing
the computational time from several hours to a few
minutes.

2. What is a DCGAN

A GAN has two different neural networks competing
each other and learning how to reproduce realistic syn-
thetic data from an input dataset. A Deep Convolu-
tional GAN (DCGAN) is a GAN which uses batch
normalisation, it is made of two all-convolutional net-
works, uses the Adam Optimizer and the leaky ReLU
activation function (Xu et al., 2015; Radford et al.,
2015).

3. The training

A good training set is crucial to teach ExoGAN how
to generate a realistic transmission spectrum. GANs
are general methods, recently they have been applied
to several serious problems, such as semi-supervised
learning, stabilizing sequence learning methods for
speech and language, and 3D modelling (Denton et al.,
2015; Radford et al., 2015; Salimans et al., 2016;
Lamb et al., 2016; Wu et al., 2016). However, they
still remain remarkably difficult to train, with most
current papers dedicated to heuristically finding stable
architectures (Arjovsky and Bottou, 2017). We use a
training set of 10 million of spectra varying 7 different
parameters: H,O, COs, CH4 and CO abundances,
the mass of the planet M,,, the radius 2, and the tem-
perature T},. In order to stretch as much as possible
every feature we divide the input spectrum into sev-
eral different bins as shown in Fig 1 We normalised
each of these spectra between 0 and 1 and, to optimise
the efficiency of our GAN to recognise the features
and the correlations between the parameters we nor-
malised each parameters as following (see Fig 2)
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Figure 1: Spectral binning used in this work. The
green vertical line are represent the bin edges accord-
ing to some water features. the Red area is the wave-
length range related the the Hubble WFC3 camera and
the lime area is that of the JWST.

Figure 2: Normalised spectrum. Each area is dedi-
cated to a particular atmospheric characteristic: Area
1 is the spectrum between 1pm and 50um at resolu-
tion 100 normalised between 0 and 1 in each spectral
bin. From area 2 to 5 give information about the nor-
malisation factors used in the different section of the
spectrum, clear and dark area give, respectively, infor-
mation about the maximum values and the minimum
values. In areas from 6 to 8 there are, respectively,
COs, CO and CH, abundances. Areas 9 to 11 are,
respectively M,,, R, and T},. Area 12 gives informa-
tion on the H,O abundance.

3.1. Method - Generative Adversarial Net-
works

GANs are classified as unsupervised learning algo-
rithms. In our work we use it to recognise spectral
features from exoplanetary spectra. The very same net,
nevertheless, can be used to detect the characteristics
of an image (Goodfellow, 2017; Creswell et al., 2018).
GAN:S consist of two neural network facing each other
and learning how to reproduce a realistic synthetic data
from an input dataset. The two essential parts of a
GAN are de Discriminator and the Generator nets (Fig
3).

4. The training

In order to update the weights related to the two neural
nets we need to differentiate this function with respect
to the discriminator and the generator. Concerning the
generator training, the gradient of the first term with
respect to the generator is zero (the generator does not
appear there) so only the second term is relevant. As-
suming that the discriminator does a really good job in
discriminating the real and the fake images, it means
that D(G(z)) is very close to zero, the slope of the
cost function at point 0 is also very close to zero and
the 6, has no chance to improve and change. It means
that in this case the network does not learn anything
from the training set. For the generator, a possible so-
lution to this problem could be, instead of targeting the
value 0 for fake images, looking at the value 1 target
(real images), it means that we are trying to minimise
the negative expected value of log D(G(z)) and so we
can use as a cost function for the generator:

J© =Ky, [log (D(G(2)))] M

This new solution works because the term
log D(anyimage) corresponds to a target of value 1
in the binary cross-entropy and the other term is irrel-
evant because its derivative in the gradient descent is
zero. For each number of training iteration and for k
steps, defining as m as the batch size of or set, we up-
date the discriminator by ascending its stochastic gra-
dient (Goodfellow et al., 2014):
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At the same time we update the generator by de-
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Figure 3: ExoGANscheme. From right to left, The generator reproduce a realistic spectral sample that is seen by
the discriminator. The discriminator network is the only one who have access to the real dataset. By analysing both
the generated sample and the real one it tries to understand whether the generator is able to reproduce a perfectly

realistic spectral sample or not.

scending its stochastic gradient:

ved% En: log (1 —log D (G (z“)))) 3)

i=1

5. Image reconstruction

Atmospheric Retrievals are often computing intensive
and they need to be done by fitting many parame-
ters. A Bayesian model on exoplanetary atmosphere
parameters are done using non-informative (flat) pri-
ors within a range of values. These ranges are often
fixed according to physical constraint and, once one
have experience on exoplanetary atmosphere, user ex-
perience. The use of Artificial Neural network can re-
place the user experience with a more sofisticated and
completely unsupervised tool. The use of ExoGAN,
trained on a huge dataset of exoplanetary atmospheres
models can help the retrieval code to have better con-
straint, get rid of the solutions that are likely not to give
any acceptable solution and accelerate the computing
analysis. In order to find the best Z we define two loss
functions for an arbitrary Z ~ p,: the contextual loss
and the perceptual loss:

ﬁconteztual(z) :” M © G(Z) -M @y ”1 (4)

with || 2 1= ¥;|;| for some vector x.

ﬁperceptual(z) = lOg (1 - D(G(Z))) (5)

We find 2 defining a combination of the two losses:

L= Lconteztual(z) + )\'CpeTceptual(z) (6)

where A is a hyper-parameter which control how im-
portant is the contextual loss compared to the percep-
tual. At this point 2 is defined as:

£ = argmin £(z). (7

The best reconstructed image defined in ?? is the
one that uses the Z defined in 7. In Fig 4 we show
the three phase associated to a prediction. We see that
the input parameters are masked and reproduced by a
pre-trained ExoGAN.



Figure 4: On the left we find the input spectrum together with the parameters pixels. In the centre there is the
masked spectrum which is fed to the ExoGAN and on the right we find the predicted spectrum with the best pixels
parameters.
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Figure 5: Feature recognition of ExoGAN. The black line is the input spectrum and the red one is the best generated
one. ExoGAN recognised all the features of the input spectrum associating to it the parameters that can generate it
with a classical model.



6. Results on Test set

Test set parameters

Variable accuracy 2 (10) i (20)
co 50.2% 5.83 1.46
co2 85.3% 0.85 0.21
H20 79.6% 2.64 0.66
CH4 68.8% 0.46 0.11
Rp 98.4% 0.03 0.01
Mp 71.8% 1.59 0.40
Tp 75.5% 241 0.60

Table 1: Accuracies and ¥? associated to each param-
eters for 1000 test spectra. The 2 column represent the
absolute accuracy of the prediction without taking into
account the error bar of the prediction. The 2nd and
3rd column are the %2 calculated, respectively, using
one o and 2 ¢ prediction errors.

7. Summary and Conclusions

We demonstrated how the use of a DCGAN can help
the spectral retrieval of exoplanetary atmosphere. DC-
GAN in our work are 210% faster than a Bayesian
analysis on the same spectrum. The output parame-
ters distribution can be used either as a final solution
or as an input prior distribution for a more efficient
Bayesian modelling.
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