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Abstract

Recent models of Enceladus’s interior structure hint
at large thickness variations of the ice shell. Real-
istic models of the tidally induced deformation and
stress should reflect correctly these variations. Here
we present results of our benchmarking efforts for re-
cently developed approaches evaluating the tidal de-
formation of planetary shells with complex shape and
rheology [1, 2, 3]. We assess the advantages and limi-
tations of both approaches.

1. Introduction

Analysis of the libration, topography and gravity have
shown that the Enceladus’s ice shell is rather thin with
large thickness variations e.g. [4, 5]. Crustal thinning
at the south pole locally increases the stress and tidal
dissipation [2, 3]. The predicted stress and heating
enhancement could be partly responsible for the ob-
served surface features and activity.

Studies of tidal deformation reflecting non-spherical
shape of bodies are nevertheless rather rare in the
planetary science community (see [3] for a summary).
The standard approach is based on a spectral method
requiring a spherically symmetric internal structure.
Here we compare results of two approaches well suited
to the computation of tidal deformations and dissipa-
tion in a shell of variable thickness.

2. Model

Here, we study the mechanical (quasi-static) response
of a compressible viscoelastic shell of variable thick-
ness on tidal loading. For describing the viscoelas-
tic behavior, we assume the compressible Maxwell
rheology characterized by the shear and bulk moduli
and the viscosity 7. The viscosity is generally non-
uniform and we employ an Arrhenius-type [3] or a
Frank-Kamenetskii-type temperature dependence for
a conductive profile.

The tidal (loading) potential for a body on an eccen-
tric synchronous orbit is described by

Vv o= rlJle (7%P20(COSI9) cos wt+

1
iPzg(cos 9) (3 coswt cos 2¢ + 4 sinwt sin 2@)) ,

where ¢ is the time, w is the angular velocity and e
is the eccentricity; P, are the associated Legendre
functions for degree j and order m.

We use an analytical description of the ice shell
thickness model

d = 23 — 12Pyy(cos ) + 4P3g(cos ),

d in km [3], capturing well the main features of the
gravity inversion models for Enceladus.

3. Methods

For evaluating the stress and displacement, we em-
ploy two approaches. The first method (finite element
method or FEM, see [1, 2]) consists in integrating the
Eulerian governing equation in the time domain. The
equations are solved using three-dimensional finite el-
ement method and FEniCs package [6].

The second method (thin shell approximation or
TSA, see [3]) takes advantage of the quasi-linear vari-
ation of the strain along the shell radius, which holds
if the shell thickness is less than 10% of the surface
radius. All variables are then integrated over the thick-
ness leading to 2D equations. For a variable shell
thickness, the tidal thin shell equations are solved as a
system of coupled linear equations in a spherical har-
monic basis.

4. Preliminary results

Preliminary results suggest that the two approaches
agree well, with an error of the order of a few percents
(see an example for low viscosity contrast in Fig. 1).
The discrepancy for the tangential components of the
displacement is mostly due to not fully converged so-
lutions for the time domain method in regions with
high viscosity (FEM). The difference in surface stress
is slightly larger as the error of TSA could reach 15%
at some locations on the equator [3]. The difference
between TSA and FEM dissipation is partly due to the
TSA error on stresses, and partly due to the bulk dis-
sipation which is included in TSA. In general, TSA
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Figure 1: An example of results (displacement u, deviatoric stress ¢ and tidal heat flux) for variable ice shell
thickness and small viscosity contrast (Frank-Kamenetskii-type dependence, nyin = 10'3Pa.s, nymax = 10'Pa.s),
TSA (red), FEM (blue), plots along meridians at the surface or at the bottom boundary

is a fast and stable method allowing for large viscos-
ity contrasts. On the other hand, TSA is intrinsically
an approximate method: it is thus advisable to esti-
mate the error for a spherically symmetric model be-
fore solving the full problem. In comparison, FEM is
naturally significantly slower as it solves the full three
dimensional problem, and it may suffer from numer-
ical oscillation especially for the stress. On the other
hand, fewer assumptions are employed and it can deal
with broader applications, including faults [1].
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