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1. Introduction 

The Mercury has the second best preserved impact 

record in the inner Solar System due to the absence 

of an atmosphere, but a much higher rates of surface 

modification than on the Moon [1-3]. The earliest 

geological mapping of the planet revealed a variety 

of important differences from the Moon, regarding 

the impact basin (≥ 300 km) and cratering record as 

well as extensive volcanic plains of Mercury [1-3]. It 

has been shown [3] that the bombardment history of 

the terrestrial planets is lunar-like and linked in term 

of impactor population(s) and impact rates. Recent 

studies suggest that Mercury and Moon had the same 

early impactor populations based on the similarity of 

the crater size-frequency distributions (CSFD), 

however the impact rates on Mercury are higher than 

on the Moon [4, 5]. Fassett et al. [6] catalogued and 

characterized the basin population on Mercury using 

early orbital data obtained by the MESSENGER 

spacecraft and found 46 certain and probable impact 

basins, as well as a few more uncertain suggested 

basins. Many of these suggested basins were 

proposed on the basis of Mariner 10 but could not be 

verified with the available new data.  

In this study, we are re-investigating the number of 

the mercurian impact basin (≥ 300 km) and their 

superposed crater populations. Moreover, we will 

revisit the stratigraphic relationships of basins based 

on N(20) and N(64) crater frequencies, absolute 

model ages, and observation data. Finally, we intend 

to infer potential projectile populations and compare 

the findings to the Moon. 

2. Data and Methods 

The primary data for this study are optical images 

mosaicked into a 166 m/pixel global data set and 

topography (665 m/pixel) from MESSENGER’s 

Mercury Dual Imaging System (MDIS) and Mercury 

Laser Altimeter (MLA) (250 m/pixel). All data 

products are available from the Planetary Data 

System (PDS). The data was analysed in ESRI 

ArcGIS 10.3 environment. The CraterTools 

extension in ArcMap [9] was used to map the basins 

and their related crater population. We classified 

basins as either certain, probable or suggested. We 

use two different mapping approaches by (1) 

counting craters on the basin rim excluding all 

resurfaced areas by the smooth plains, and (2) 

mapping all craters inside the basin cavity, which 

provides a lower limit crater density and absolute 

model age (AMA) for the basins. Most commonly we 

apply the second approach, because the basins are 

fully or partially covered by plains in various 

thicknesses [6]; the degree of basin resurfacing is 

evidently much more substantial than on the Moon. 

To derive the CSFD of impact basins we will use the 

CSFD_Tools from [10], and apply the buffered crater 

counting technique [7] (first and second mapping 

approaches) and the buffered non-sparseness 

correction technique (first mapping approach) as in 

our previous study on the Moon [8]. We will also 

consider AMA of the impact basins by applying the 

CraterStats software [11].  

3. Preliminary Results 

We identified 80 certain or probable basins on 

Mercury, twice as much as in the previous study [6]. 

This increase in number will have substantial 

implications for the early history of Mercury´s crust. 

Most of the basins are buried by smooth plains, 

intercrater plains, or both. In addition, there are 

complex interactions of basins with lobate scarps and 

other tectonic landforms. Candidate basins are often 

surrounded by scarps, rather than obvious intact rims.  

Thus topography data is extremely useful to find 
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“hidden” basins which were not identified by earlier 

studies [1, 3, 6].  

Some of the more remarkable candidate new basins 

are candidate landforms stratigraphically beneath 

Caloris, which have never been described by earlier 

studies (e.g., Fig. 1). These basins are similar in 

character to Mendel-Rydberg on the Moon, which is 

directly superposed by Orientale ejecta, although the 

additional complication on Mercury is they are also 

buried by abundant smooth plains.   

In summary, our initial results and future work 

should greatly enhance the understanding of the early 

Mercury impact record.  

 

Figure 1: Candidate impact basin beneath Caloris on 

MLA DEM 250 m/pixel data (165E, 54N).  
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