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Abstract

1. Introduction

Comet 67P/Churyumov-Gerasimenko shows a large
variety of circular structures such as pits [1], elevated
roundish features in Imhotep [2], and a single bowl
shaped feature in the Ash region [3]. Analyzing
images of the OSIRIS camera gives a set of
characteristics of these features that need to be
explained by models for cometary formation and
evolution. Using the iSALE code [4, 5], simulations
of impact experiments into a cometary analogue
material have been performed to investigate the
plausibility of an impact origin of these features.

An additional impact experiment has been performed
by the touchdown of the Philae lander in Agilkia.
The depressions left by the impact give an
opportunity to test our understanding of the material
parameters at the very surface of the comet.

1.1 Modelling impacts
material

into cometary

Parameterizing the cometary material is the principle
challenge of impact simulations. A number of
material properties have already been derived from
observations, as e.g. an extremely low tensile
strength of only a few Pa [6, 7] for boulders as well
as the consolidated material in cliffs, and a shear
strength of a few tens of Pa [7]. The least constrained
at the moment is the compressive strength: While
Groussin et al. [7] derived a value of 30 to 150 Pa for
the compressive strength on large scales such as
cliffs, on the local scale the Philae lander experiment
SESAME/CASSE finds a much higher compressive
strength in the MPa regime [8]

Exploring the parameter space of strength and impact
velocity, we found that only the bowl shaped
depression in the Ash region can be directly linked to
impact processes. Other features, such as the
prominent pit structures and the elevated circular
features found in Imhotep can in principle be
explained by impactors, but only if additional
evolutionary processes are considered, making it
complicated to infer cometary material properties
using these events.

The bowl shaped features, on the other hand, can be
linked directly to impact processes. In this work, in a
series of numerical impact experiments we try to
recreate the shape and size of these features. This can
be used to narrow down the range of plausible
strength values and the compaction curve of the
highly porous cometary material. Additionally, these
values are cross checked by recreating the
depressions left by the Philae lander on its
touchdown, using the Philae lander as a validation
experiment.
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