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Abstract 
The present contribution aims to discuss the 
possibility to reproduce space weathering effects via 
femtosecond laser experiments in the light of space 
weathering defects found in Hayabusa regolith grains.  

1. Introduction 
The surfaces of the airless solid bodies of the solar 
system are exposed to the irradiation of the solar 
wind and to the bombardment of micrometeoroids. 
The ensemble of the effects caused by these surface 
processes is known as space weathering [1].  

Since the first recognition of space weathering in 
nature, numerous experiments have been successfully 
carried out to reproduce its spectral effects. The most 
common experiments are ion irradiation (simulation 
of the solar wind; [2]) and nanosecond laser 
experiments (simulation of micrometeoroid impacts 
[2-4]). Only a few studies further investigated the 
microstructural modifications produced by the 
experiments [5, 6], probably due to the paucity of 
regolith materials to compare with.   

Nowadays, the only regolith material available is 
from the surfaces of the Moon and asteroid 25143 
Itokawa [7, 8]. The sample return missions are a new 
frontier of the space exploration and in the following 
years, other regolith materials will be available. 
These missions are the key to understand surface 
processes on primitive bodies in the solar system.  

In this work, we present the results of an 
investigation of Itokawa grains. These natural 
observations will be compared to results femtosecond 
laser experiments to assess the capabilities of this 
experimental approach to reproduce space 
weathering effects [9, 10]. 

2. Samples and Methods 
In the framework of 4th International Announcement 
of Opportunity for Hayabusa sample investigation, 
we received five Itokawa particles. Currently we 
have focused on the investigation of particle RB-
QD04-0092, which was sliced by focused ion beam 
(FIB) and then studied by analytical transmission 
electron microscopy (TEM). 

3. Observations on RB-QD04-0092 
The RB-QD04-0092 is a flat grain (29 x 25 x 8 µm) 
consisting of enstatite (En75-80) and olivine (Fo71-78). 
The grain shows a polycrystalline rim, that indicates 
an exposure to the solar wind [11]. Solar flare tracks 
have been found in both minerals and their density is 
comparable with literature data (108 – 109 cm-2; [12, 
13]). In addition to these features, olivine and 
enstatite show typical shock effects known for 
shocked meteorites, that is, [001] dislocations in 
olivine and clinoenstatite lamellae. This is the first 
report of clinoenstatite lamellae in Hayabusa-
returned samples.  

Contrary to other literature observations, no (sulfur)- 
iron nanoparticles and amorphized rims [7] have 
been found. The absence of these features can be 
explained either due to the superimposition of the 
irradiation of solar wind or due to the gardening 
process and secondary impacts. A combination of 
both mechanisms is also possible.  

4. Femtosecond laser experiments 
Recent femtosecond laser experiments considerably 
improved the state-of-the-art knowledge on space 
weathering [9, 10]. The irradiation with femtosecond 
laser light induces a nanosecond shock wave with the 
initial pressure of several tens GPa, which results in 
the formation of microcraters with a layered 
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subsurface structure, similar to those observed in 
lunar samples [14]. The topmost layer is amorphous. 
In olivine, it can be partially recrystallized and 
contains iron nanoparticles in its lowermost part. The 
underlying layer is defect-rich. In olivine, it is 
dominated by dislocations [9], instead, in pyroxenes, 
parallel planar lamellae (amorphous in the upper part) 
and clinoenstatite lamellae are common [10]. 
Reflectance spectra of both minerals are altered, 
similarly to space weathered asteroid surfaces [9].   

5. Conclusions 
The preliminary comparison of the microstructural 
features of Itokawa regolith and irradiated minerals 
supports the employment of the femtosecond laser 
experiments for reproducing and characterizing the 
shock defect modifications. Although the spectral 
alteration of natural and experimental materials is 
similar, the mechanisms of formation of the 
amorphous layer and the iron nanoparticles might be 
different, because the experimental irradiation with 
laser light is not comparable with the natural 
bombardment with solar wind particles. To improve 
the understanding of these mechanisms and of the 
impact history of asteroidal regolith, further 
experimental studies and observations on Hayabusa-
returned grains will be necessary.  
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