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Abstract

We provide an analytical "toy" model to reproduce the
first order, yearly-averaged, latitudinal distribution of
surface temperatures for Mars under different surface
pressure, luminosity, eccentricity and obliquity. The
model is intended to be used as a complementary tool
to include the effect of meridional heat transport for
one dimensional radiative studies (i.e. investing green-
house warming for early Mars).

1. Introduction

Sedimentary deposits characterized by the Mars
Science Laboratory Curiosity rover provide evi-
dence that Gale crater, Mars intermittently hosted
a fluvio-lacustrine environment during the Hesperian
(~3.8Gya). [1] However, no theory has been able to
provide a robust and self-consistent way to maintain
global mean temperature above the freezing point due
to the low solar energy input available at that time (e.g.
warming by CO; clouds [2], water ice clouds [3], dust
[4], impacts [5], volcanism [6], reduced atmospheres
[71; [8], carbonate-silicate cycles [9]). While it has
been challenging to raise the global mean temperature
above the freezing point [10], it is possible that equa-
torial temperatures could have reached 273K. We ad-
dress this possibility using an analytical, latitudinally-
resolved climate model.

2. Model

We adapt one of the earlier methods originally devel-
oped to study the Earth climate [11] and use the an-
alytical formulations for the annual mean insolation
provided by [12]. We show that the yearly-averaged
surface temperature is:
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Figure 1: (Top) Zonally-averaged planetary albedo from the
GCM (grey markers), best fit for present day Mars (grey line)
and albedo distribution used for the early Mars predictions
(black lines). (Bottom) Comparison of the mean annual tem-
perature predicted by the NASA-Ames GCM (grey markers)
with the analytical model calculation for present-day Mars
(grey line), and analytical predictions for early Mars for dif-
ferent surface pressures (black lines).



with x the sine of the latitude, ¢ the solar constant
at Mars (e.g. 1135722 W.m~2 for present day), e the ec-
centricity, D the diffusivity of the atmosphere in unit
of [W/m?/K], A and B the outgoing longwave radi-
ation (OLR) parameters such as OLR = A+ B T.
pn(x) are the Legendre polynomes and Sa,, the net

solar insolation parameters, defined as:
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where (3 is the obliquity, S, the annually-averaged di-
rect solar insolation parameters and «,, the coefficients
used to parametrize the annually-averaged co-albedo
as

a(z) = ag + az pa(r) + oy pa() €)

For present-day Mars we provide a direct fit to the
NASA Ames General Circulation model (GCM) for
the co-albedo: «ap=0.67, as=-0.095, a4=-0.072. For
early Mars, we propose to use ag = 1 — ag, ag =
—fa x Sg and ay = —f, x Sy with ag a global mean
value for the planetary albedo and f, a parameter used
to simulate the dependence of the albedo on the solar
zenith angle. The albedo ag, as well as the parame-
ters f,, A, and B are estimated using the NASA Ames
radiative transfer code for a pure CO; atmosphere.
Suggested values for these coefficients for present-day
Mars and for 500mbar, 1 bar and 3.5bar ancient atmo-
spheres are given in Table 1

3. Results

Figure 1 (bottom) shows that, given its simplicity, the
analytical climate model (grey line) reproduces rea-
sonably well the annually-averaged surface tempera-
ture from the GCM for present-day Mars (grey mark-
ers). For the 500 mbar atmosphere and for the 1 bar
atmosphere, greenhouse warming and rather low val-
ues for the planetary albedo (see Figure 1 (top)) lead
to surface temperatures warmer than present-day, de-
spites a reduced solar luminosity (black lines in Figure
1 (bottom)). However, further increasing the surface
pressure to 3.5 bar ultimately results in lower surface
temperatures due to the increase in atmospheric scat-
tering. The 3.5 bar case drops bellow the condensation
temperature of COs at high latitudes (dotted lines in
Figure 1 (bottom)) so this solution is not stable against
atmospheric collapse.

Pressure [mbar] D OkR=A + BB T " Al[bedofa
7 002 | 212 154 (sce text)
500 0.46 -134 0.99 0.29 -0.111
1000 0.70 -72 0.66 0.33 -0.135
3500 1.28 13 0.23 0.45 -0.142

Table 1: Estimates for the diffusivity, outgoing long-
wave radiation at the top of the atmosphere, and plan-
etary albedo as a function of the surface pressure

4. Summary and conclusions

The simple analytical climate model demonstrates that
there is no obvious combination of orbital parameters
nor greenhouse scenarios that would lead to annually-
averaged surface temperature above 273K at the equa-
tor. This raises the possibility that the lacustrine envi-
ronment at Gale crater may have subsisted during the
Hesperian in the form of ice-covered lakes.
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