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Abstract
We present the results of Stellar and Exoplanetary
Atmospheres Bayesian Analysis Simultaneous Spec-
troscopy (SEA BASS) for several systems. SEA BASS
is a scheme that enables simultaneous derivation of
four-coefficient stellar limb-darkening profiles, transit
depths and orbital parameters from exoplanetary tran-
sits at multiple wavelengths. The fully empirical ap-
proach is recommended to avoid potential biases in
transit depth due to the use of limb-darkening coef-
ficients obtained from stellar-atmosphere models. We
show that, in some cases, inaccurate limb-darkening
parameterisations and/or orbital parameters may im-
part trends on the derived exoplanetary spectra, there-
fore leading to erroneous characterisation of the exo-
planet atmospheres. We discuss how to minimise the
parameter degeneracies that otherwise would signifi-
cantly inflate the error bars or prevent the convergence
of the fit. Finally, we assess the reliability and accu-
racy of state-of-the-art stellar-atmosphere models for
describing the limb-darkening profiles of a range of
stellar types.

1. Introduction
Characterisation of the atmospheres of transiting ex-
oplanets relies on accurate measurements of the ex-
tent of the optically thick area of the planet at multi-
ple wavelengths with a precision .100 parts per mil-
lion (ppm). Next-generation instruments onboard the
James Webb Space Telescope (JWST) are expected
to achieve ∼10 ppm precision for several tens of tar-
gets. A similar precision can be obtained in mod-
eling only if other astrophysical effects, including
the stellar limb-darkening (the radial decrease in spe-
cific intensity), are properly accounted for. Stellar-
atmosphere models are commonly used to predict the
limb-darkening profiles, but empirical estimates are
desirable, both to test the stellar models and to re-
duce potential biases in transit depths due to errors in
the theoretical models or to other second-order effects,

such as stellar activity, granulation, gravity darken-
ing, etc. Numerous functional forms, so-called limb-
darkening laws, have been proposed in the literature to
approximate the stellar intensity profile with different
numbers of coefficients. While some two-coefficient
laws are appropriate for certain stellar types and pass-
bands [Espinoza & Jordan 2016, Morello et al. 2017,
Maxted 2018], the Claret’s four-coefficients formula
is the most robust over all stellar types and passbands
[Claret 2000, Morello et al. 2017].

2. The method
The SEA BASS method consists of measuring the “ge-
ometric” orbital parameters from infrared transit ob-
servations, then implementing the results as informa-
tive priors when model-fitting at shorter wavelengths.
The impact parameter, b, and central transit duration,
T0, constitute an equivalent set of less correlated pa-
rameters than the semi-major axis in units of stellar
radius, a/R∗, and inclination, i. The SEA BASS
approach is motivated by the smaller limb-darkening
effect in the infrared, which mitigates the potential
biases due to inaccurate models, and the negligible
wavelength-dependence of a/R∗ and i. Different vari-
ants of the original algorithm, such as using multiple
infrared passbands with fixed (four) or free (two) limb-
darkening coefficients to derive the geometric priors,
will be discussed.

3. Results
3.1. Synthetic datasets
Figure 1 show the results in transit depth of the
SEA BASS fit (and others) on synthetic datasets
[Morello et al. 2017]. The use of informative priors on
a/R∗ and i is necessary to enable convergence of the
fit with free four-coefficient limb-darkening; the re-
sulting error bars are smaller than those obtained with
free two-coefficient limb-darkening and uniform pri-
ors on a/R∗ and i.
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Figure 1: Histograms (red and orange channels) of the
MCMC-sampled posterior distributions of the transit
depth for a hot-Jupiter in front of a M5 dwarf, Hub-
ble STIS/G430L passband, fitting Rp/R∗, a/R∗, i,
claret-4 limb-darkening coefficients and the normal-
ization factor, adopting gaussian priors on a/R∗ and
i. The histogram channels are half-thick and shifted to
improve their visualization. The red and orange lines
denotes the analogous posterior distributions with non-
informative priors for all parameters (the shape and
the discrepant results indicate that the chains did not
converge, in this case). The blue and light-blue lines
are for the case of power-2 limb-darkening and non-
informative priors for all parameters.

3.2. Real datasets
Figure 2 compares the empirical limb-darkening pro-
files obtained for HD209458 over five HST/STIS pass-
bands in the range 290–570 nm with some reference
models [Morello 2018]. The discrepancies are signif-
icant for the three passbands with the highest Signal-
to-Noise Ratio (SNR). Figure 3 compares the relevant
exoplanet transmission spectra. In this case, no sig-
nificant biases are obtained when using fixed limb-
darkening coefficients from stellar-atmosphere mod-
els. However, HD209458 is relatively well-known, be-
cause it is a Sun-like star. The preliminary analyses on
other systems present larger effects in the exoplanet
transmission spectra.

4. Conclusions
We performed self-consistent analyses of infrared to
visible exoplanetary transits to obtain accurate trans-
mission spectra of the exoplanet atmospheres and stel-
lar limb-darkening profiles (SEA BASS). The new
method is necessary to avoid the potential biases in-
troduced by the stellar-atmosphere models, which, in
some cases, may significantly alter the exoplanet spec-
tra. We also assess the reliability and accuracy of state-
of-the-art stellar-atmosphere models for describing the
limb-darkening profiles of a range of stellar types.
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Figure 2: Left panel: empirical limb-darkening pro-
files obtained from the spectral lightcurve fits (differ-
ently coloured squares) and theoretical models com-
puted by [Knutson et al. 2007] (same color lines).
Right panels: residuals between the empirical and the-
oretical profile with vertical offsets.
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Figure 3: Transit depths for five spectral bins, using:
b and T0 fixed to the Spitzer/IRAC weighted mean
values, phase shifts obtained from the white light-
curve fit, and free limb-darkening cofficients (red, full
squares), or fixed limb-darkening coefficients reported
by [Knutson et al. 2007] (green diamonds), all free pa-
rameters with Spitzer/IRAC weighted mean priors on
b and T0 (orange, empty squares).
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