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Abstract
As Enceladus orbits Saturn on a slightly eccentric or-
bit, it is periodically deformed due to daily changes
in their mutual distance. The deformation and stress
can result in tidal dissipation and very likely also mod-
ulate the observed geysering activity near its south
pole [1, 2]. Additional enhancement of stress and de-
formation magnitudes originates in the physical libra-
tion [3]. On decadal time scales, the deformation and
stress in the shell are influenced by long-period libra-
tion and eccentricity variations. By means of numer-
ical simulations, we investigate the decadal changes
in the stress and deformation in the ice shell of Ence-
ladus, and we discuss their implication on the variation
in the plume activity depending on the rheological pa-
rameters of the shell.

1. Introduction
On short time-scale periods, deformation, stress and
dissipation of Enceladus are controlled by the diurnal
tides (due to eccentricity and short-period physical li-
bration). In the ice shell, the stress/deformation mod-
ulates the observed geysering activity (the measured
plume brightness [1, 2]). The observed activity is nev-
ertheless approximately 5 hours delayed compared to
theoretical models unless the shell is thick and highly
dissipative [4]. During almost a decade of observa-
tion, the plume activity are possibly further modulated
by seasonal changes, buildup of ice at the vents and/or
eccentricity and libration variations [5, 6].

Here we investigate the latter possibility – variation
of the plume activity due to changes in orbital parame-
ters and libration, i.e. the variations related to indirect
perturbations of Enceladus’s orbit by Dione (on peri-
ods 11 years, and 3.7 years).

2. Model
In our model, we assume that the short-period de-
formations are elastic. For deformations due to the
long-period libration, we take into account viscoelas-
tic (Maxwell) rheology in order to describe deforma-
tion and stress patterns. Additionally, we assume that
the libration amplitudes and eccentricity variations do
not (or only weakly) depend on the rheology of the

Figure 1: Coefficients of forcing potential for short-
period (left) and long-period (right) forcing and the
current eccentricity.

shell cf. [7, 8] and stress and deformation on different
scales can be combined linearly.

The force acting on the shell on the different time
scales is described using the potential V :

V = A20Y20 + 2<A22<Y22 − 2=A22=Y22,

where Yjm are spherical harmonics on degree j and
order m. The amplitudes of the tidal potential Ajm

are comparable for both processes (see Figure 1) and
therefore the long-period libration can further modu-
late the opening/closing of the faults depending on the
rheological parameters.

In order to evaluate the stress and deformation due
to the tidal force numerically, we use a finite element
code solving the mechanical response of a 3D com-
pressible shell of variable thickness (possibly includ-
ing faults) for the Maxwell viscoelastic and elastic rhe-
ologies [9, 10].

Following [4, 10], we compute theoretical curves
of the geysering activity along the faults using the
stress/displacement patterns and their time variations.
We compare misfit between the predicted and ob-
served data for models described by different values of
the dissipation factor on periods 3-11 years. The time
lags between the observed and predicted activities are
described by a single free parameter.

3. Preliminary results
An example of the effect of the long-period libra-
tion on the predicted activity (without eccentricity
changes) in a shell of variable ice shell thickness [11]
and constant (or weakly depth dependent) rheological
parameters is shown in Figure 2. If the shell is re-
laxed (stress is low) on periods of years, we do not
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Figure 2: The predicted activity of the geysering activ-
ity as a function of the observation time for the shell
characterized by η equal to 1014Pa.s (top), 1016Pa.s
(bottom).

naturally observe any significant influence on the pre-
dicted activity and the stress regime is controlled by
the short-period forcing. For less relaxed solutions,
the predicted activity depends on the year of observa-
tion. The enhancement/reduction in the predicted ac-
tivity nevertheless depends on the rheological param-
eters. In order to obtain the best model, we compute
the reduced misfit between the observation and pre-
diction. The models with the smallest misfit are con-
sistent with viscosities ranging between 1016Pa.s and
1018Pa.s (Q = 1.001−5.5) for the lag equal to 5 hours
(Figure 3).

4. Conclusions
The long-period libration can result in decadal changes
in the plume activity on Enceladus and can possibly
provide an estimate of the dissipation factor on 3-11
years periods. An additional mechanism is neverthe-
less needed to explain the observed time lag between
the predicted and observed activity on diurnal periods.
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Figure 3: The reduced misfit between the predicted
and VIMS (top) and ISS (bottom) data as a function of
the parameterized lag.

References
[1] Hedman et al. Nature 500, 182-184 (2013).
[2] Nimmo et al. (2014), AJ 148, No. 46.
[3] Thomas, P. C. et al. (2016), Icarus 264, 37–47.
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