

Multi-dimensional analysis and visualization of planetary electromagnetic field fluctuations by the iPECMAN interface

D. Piša (1), O. Santolík (1,2), J. Souček (1), and U. Taubenschuss (1)

(1) Department of Space Physics, Institute of Atmospheric Physics, Czech Academy of Sciences, Prague, Czechia, (2) Faculty of Mathematics and Physics, Charles University, Prague, Czechia (dp@ufa.cas.cz)

Abstract

Interface for a sPECtral Matrix ANalyzer (iPECMAN) is a web-based analytical tool that aims at multi-dimensional analysis and visualization of planetary electromagnetic field fluctuations. It calculates characteristics of electromagnetic waves from in-situ spacecraft measurements. These characteristics are the key signatures of fundamental processes in the solar wind and planetary magnetospheres. The interface is developed as a part of VESPA (Virtual European Solar and Planetary Access) work packages in the frame of Europlanet-H2020-RI.

1. Introduction

The iPECMAN is based on the PRASSADCO (PPropagation Analysis of STAFF-SA Data with COherency tests) analysis tool [1], developed originally in the frame of the ESA Cluster Project. PRASSADCO implements various methods used to estimate polarization and propagation parameters, such as the degree of wave polarization, sense of elliptic polarization and axes of polarization ellipse, the wave vector direction, the Poynting vector or the refractive index [2, 3, 4, 5].

The above methods have been previously used for data analysis and validation from the STAFF-SA instruments onboard the four Cluster spacecraft [2], the Cassini RPWS data [6, 7], the IMS and ICE instruments on the DEMETER spacecraft [8], the Polar PWI-HFWR data [3, 4], and data from the EMFISIS Waves instruments onboard the NASA Van Allen Probes Spacecraft [9].

2 iPECMAN

iPECMAN is a tool designed to provide different outputs of the electromagnetic wave characteristics observed in the solar wind and planetary magnetospheres. It interfaces the VESPA data services or user

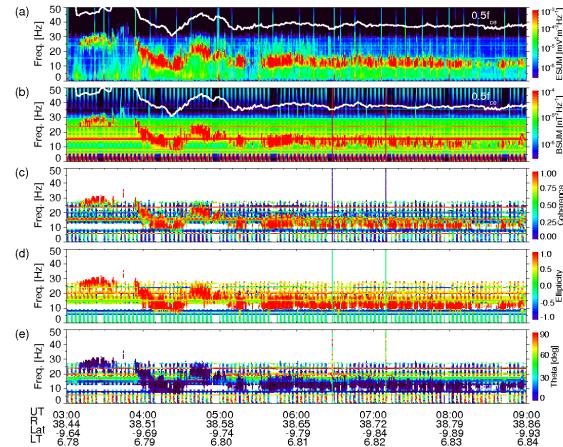


Figure 1: Example of the PRASSADCO output as presented in [4]. Analysis of electric and magnetic field waveforms recorded by the RPWS instrument onboard Cassini on 3 July 2005.

provided data with the PRASSADCO analysis tool. The interface is written in PHP and requires Apache2 web server and PostgreSQL database. This gives sufficient performance and painless portability.

The input data are in CDF (Common Data Format) [10]. The interface implements the existing Cluster STAFF-SA Spectral Matrix data [11] or generic CDF files [12]. The input CDF file must be structured with a header section containing the global attributes, and a data section containing the variables and the associated variable attributes. Metadata compliant with the EPNcore data model, used by the VESPA project for its data distribution protocol EPN-TAP [13], can also be included. The input data can be directly uploaded to the interface through a form or url query.

An uploaded CDF file is converted to the PRASSADCO input format. Then a two-step configuration of an output file format is done. In the first step,

common definitions and output formats are set (Fig. 2). Consequently, an output panel setting is made. A user fills a simple form or selects output from several predefined options. Finally, input data are processed by PRASSADCO using an user-defined configuration and visual files are returned. Together with a visual output, i.e. a PNG image, a CDF output file [14] is provided. Another way to retrieve data is to use SAMP [15]. SAMP is a messaging protocol that enables various software tools (e.g. TOPCAT) to interoperate and supports communication between applications on the desktop and in web browsers. A user is allowed to edit his options in every step of configuration.

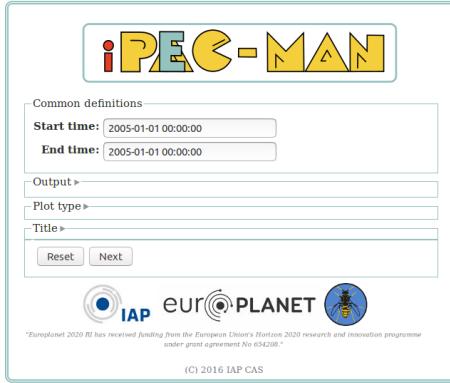


Figure 2: A screenshot of common definition form for the iPECMAN output configuration.

3 Summary

We developed the web-based interface (iPECMAN) dedicated to calculation and visualization of multi-dimensional electromagnetic wave analysis. It can be used to analyze characteristics of electromagnetic waves from in-situ spacecraft measurements that are the key signatures of fundamental processes in the wide range of space plasma environments. The web-based interface implements the existing data or allows to upload user-defined data using a generic CDF data format.

Acknowledgements

EuropaNet 2020 RI has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 654208.

References

- [1] http://aurora.troja.mff.cuni.cz/~santolik/PRASSADCO/staff_sa/
- [2] Santolík, O. et al., Singular value decomposition methods for wave propagation analysis. *Radio Science*, 38, 1010, 2003. <https://doi.org/10.1029/2000RS002523>
- [3] Santolík, O. et al., Magnetic component of narrowband ion cyclotron waves in the auroral zone. *Journal of Geophysical Research*, 107, 1444. <https://doi.org/10.1029/2001JA000146>, 2003.
- [4] Santolík, O. et al., Survey of Poynting flux of whistler mode chorus in the outer zone, *J. Geophys. Res.*, 115, A00F13, doi:10.1029/2009JA014925, 2010.
- [5] Santolík, O. et al., Complete wave-vector directions of electromagnetic emissions: Application to INTERBALL-2 measurements in the nightside auroral zone, *J. Geophys. Res.*, 106, 13,191-13,201, 2001.
- [6] Santolík, O. et al., Intense plasma wave emissions associated with Saturn's moon Rhea, *Geophysical Research Letters*, 38, L19204. <https://doi.org/10.1029/2011GL049219>, 2011.
- [7] Přša, D. et al., First observation of lion roar emission in Saturn's magnetosheath. *Geophysical Research Letters*, 45. <https://doi.org/10.1002/2017GL075919>, 2018.
- [8] Přša, D. et al., EMIC waves observed by the low-altitude satellite DEMETER during the November 2004 magnetic storm, *J. Geophys. Res. Space Physics*, 120, 2015.
- [9] Santolík, O. et al., Fine structure of large-amplitude chorus wave packets, *Geophys. Res. Lett.*, 41, 293-299, doi:10.1002/2013GL058889, 2014.
- [10] <http://ppi.pds.nasa.gov/doc/cdf/PDS4-Archiving-of-CDF-Files-v3.pdf>
- [11] https://caa.estec.esa.int/documents/UG/CAA_EST_UG_STA_v35.pdf
- [12] <http://ipecmans.ufa.cas.cz/files/Generic-iPECMAN-CDF-Dataset-V05.pdf>
- [13] <https://voparis-confluence.observatoire.fr/display/VES/EPNcore+v2>
- [14] <http://ipecmans.ufa.cas.cz/files/iPECMAN-OUTPUT-CDF-Dataset-V02.pdf>
- [15] <http://www.ivoa.net/documents/SAMP/>