

High thermal inertia areas on Ceres

¹E. Rognini, ¹M. T. Capria, ¹F. Tosi, ¹M. C. De Sanctis, ¹A. Frigeri, ¹E. Palomba, ¹A. Longobardo, ¹S. Fonte, ²M. Giardino, ¹F. G. Carrozzo, ¹A. Raponi, ¹M. Ciarniello, ²E. Ammannito, ³C. A. Raymond, ⁴C. T. Russell

¹INAF-IAPS Istituto di Astrofisica e Planetologia Spaziali, Via del Fosso del Cavaliere 100, 00133 Roma, ²ASI Agenzia Spaziale Italiana, Via del Politecnico snc, 00133 Roma, ³Institute of Geophysics and Planetary Physics, University of California at Los Angeles, 3845 Slichter Hall, 603 Charles E. Young Drive, East, Los Angeles, CA 90095-1567, USA, ⁴NASA/Jet Propulsion Laboratory and California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA

Abstract

We compare theoretical and measured surface temperatures on Ceres. We model surface temperatures with a thermophysical code that provides the temperature value as a function of thermal conductivity and roughness (i.e., a measure of topography on the sub-pixel scale). The results suggest high values of thermal inertia in the Haulani crater, and possibly in crater Occator's faculae.

1. Introduction

Thermal inertia is a fundamental parameter that controls surface temperature variations of airless body. Its value is sensitive to the presence of dust, regolith or rock, so this is an indicator of the history and type of the surface material. Ceres and Vesta, the two largest bodies of the main asteroid belt, are important to understand the early stages of solar system and the formation of terrestrial planets. The Visible and InfraRed mapping spectrometer (VIR) [1] onboard the NASA Dawn mission enabled the measurement of surface temperatures of these bodies on their day side (the instrument is sensitive to daytime temperatures higher than 180 K [2]), and a thermal analysis was performed Vesta's surface, obtaining a broadly regional map of thermal inertia [3]. We have recently carried out a similar analysis for Ceres [4] to determine its average value of thermal inertia. Here, we show the results of the analysis performed on two local-scale areas: the bright faculae found in the floor of crater Occator, and crater Haulani.

2. The method

We derive thermal inertia by comparing VIR-retrieved surface temperatures with theoretical temperatures calculated with a thermophysical model.

Local illumination and observing geometry have been derived from a detailed shape model of Ceres. The surface temperature strongly depends on the thermal conductivity of the uppermost surface layer as thick as few cms; the code can simulate different types of material from moondust to bedrock, in ascending order of thermal conductivity. Crater Occator's bright faculae and crater Haulani have been analyzed in this way and for each of them we calculated theoretical daytime temperature profiles, varying the parameters of thermal conductivity and roughness until the measured temperature values were reproduced to within the associated uncertainties.

3. Summary and Conclusions

We find that the thermal inertia in crater Haulani's central mountainous ridge and floor is substantially higher than the average value of Ceres. It should be noted that Haulani is one of the youngest impact craters on Ceres (< 6 Myr, [5,6]) both from a geologic and mineralogical perspective [7]. Its central mountainous ridge and parts of its floor may be substantially compact compared to surrounding terrains, even though it remains unclear why the same behavior is not observed in other comparably young surface features. Although to a lesser extent compared to crater Haulani, the bright faculae found in the floor of crater Occator may also be showing higher-than-average thermal inertia, probably due to locally coarse grain size or roughness; this point is still unclear.

Acknowledgements

VIR is funded by the Italian Space Agency and was developed under the leadership of INAF-Istituto di Astrofisica e Planetologia Spaziali, Rome, Italy. The

instrument was built by Leonardo (Selex-Galileo), Florence, Italy. The authors acknowledge the support of the Dawn Science, Instrument, and Operations Teams. This work was supported by the Italian Space Agency and NASA. We thanks the Dawn Operation Team and the Dawn Science Team.

References

- [1] M. C. De Sanctis et al., *Space Sci. Rev.*, **163**, 329–360 (2011),
- [2] F. Tosi, M. T. Capria, M. C. De Sanctis et al., *Icarus*, **240**, 36-57 (2014),
- [3] M. T. Capria, F. Tosi, M. C. De Sanctis, F. Capaccioni et al., *Geophysical Research Letters*, **41**, 1438-1443 (2014),
- [4] Rognini, E., Capria, M. T., Tosi, F., et al., *EPSC2017*, **11** (2017)
- [5] O'Brien D. P., Walsh K. J., et al., *Icarus* **239**, 74–84 (2014),
- [6] Hiesinger H., Marchi S., et al., *Science* **353** (2016),
- [7] Tosi et al. *Meteoritics & Planetary Science* 1–23 (2018)