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Abstract

The Planetary Fourier Spectrometer (PFS) instrument
on board the Mars Express mission generated a large
database of spectral information for the Red Planet
from the start of its mission. The objective of this work
is to correct major limitations of the instrument caused
by micro-vibrations which generate "ghosts" in the ac-
quired spectra. The observed spectra can be seen as a
convolution between the original clean Martian spec-
tra and perturbation kernels. A blind deconvolution
approach in the field of inverse problems is used to re-
move the ghosts from the measured Martian spectra
through an Alternating Minimization algorithm (AM).
Constraints are applied so that the estimates respect
the physical properties of the investigated signals.

1. Introduction

The ghost problem of the Mars spectra was first ana-
lyzed in [4]. In [6] and [5] a precursor methodology
of the one proposed here was presented. First, the ana-
lytical model was developed to justify the first-order
approximation by convolution [6]. There are three
sources for Mars spectrum ghosts: the sampling step
error and the cyclic misalignment of the cubic cor-
ner mirrors of the interferometer, both due to micro-
vibrations caused by other instruments on board the
mission satellite and the asymmetry error of the in-
terferogram due to the random start of the acquisition.
By mathematically modeling these errors and inserting
them into the definition of a monochromatic source,
we have observed that these errors are represented by
Diracs at specific frequencies and have a harmonic
propagation behavior inside the Mars spectra. There-
fore the kernel must be estimated with a sparsity in-
ducing algorithm that can handle complex values.
Based on that work, a first attempt of blind decon-
volution was proposed [5]. Typical results of this strat-
egy are shown in fig. 1. The averaged spectrum shows
a pronounced smooth aspect indicating that an algo-
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Figure 1: In Figure 1 the first spectrum from above
is the measured spectrum from the PFS containing
ghosts marked by arrows. The second spectrum is the
result from [5] while the third is a synthetic simula-
tion. The last two are an average of 11 non-treated
spectra and an average of 11 estimated spectra with
[5] respectively.

rithm to estimate one Mars spectrum should be able to
deliver smooth solutions that additionally are real and
positive.

2. Methodology

2.1. Direct problem
mxk=s (1)
Where: s € C is the measured spectrum, k € C is

the perturbation kernel, m € R is the original Mars
spectrum, x is the convolution.

2.2. Inverse problem
lls = mx k|I3 + Al [Dml[3 + Ael[k][1 (@)

Where: ||s — m * k||3 is the fidelity to the data
term, \,,||Dm]||3 is a smoothing regularization term
and \i||k||1 is a sparsity inducing regularization term.
This expression is non-convex but does become con-
vex if one of the regularization terms is fixed.



2.3. AM Algorithm

To estimate m, we use an AM algorithm with two al-
ternating steps: to estimate Mars a projected Newton
algorithm [2] is used in the first step while the ker-
nel is considered known, then to estimate the kernel a
FISTA algorithm [1] is used while the Mars signal is
considered known:

Initialize mo, ko, Cmyg, Jotda = 0,8 = mg * ko
Ji=lls 3|13
While | Joq — Ji| > €stop
1A, = (ME My + X\, DTDYL - MT |5
m; = P((l - ami) SMmi—1 + Qo * A'n,i)
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End While
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Where: A, and o, are the Newton’s step and step
size, J; is the functional value at each iteration, P is
the projection on the constraints given, prox is the
proximal of k; onto a convex subset [3], L is the Lips-
chitz constant.

3. Results and Conclusions

In Figure 2 the same spectrum from the same orbit as
in [5] is presented: the measured spectrum, the result
from [5] and the result from our AM algorithm. Mars-
AM shows a smoother estimated spectrum, with an at-
tenuation of the ghosts and preservation of the absorp-
tion bands. Regarding the AM algorithm itself there
are three major improvements: automated choice of
Am and Ay, hyper-parameters at run time with different
strategies, the algorithm allows constraints to be ap-
plied on the estimated signals (real valued, positivity)
and the addition of an automatic stopping criterion for
the estimation. This new strategy opens new perspec-
tives on the correction of the full PFS dataset.
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Figure 2: Preliminary results of our new approach. (i)
PFS measured spectrum, (ii) Previous results from [5],
(iii) Our AM algorithm.
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