Europlanet Science Congress 2020
Virtual meeting
21 September – 9 October 2020
Europlanet Science Congress 2020
Virtual meeting
21 September – 9 October 2020
EPSC Abstracts
Vol. 14, EPSC2020-488, 2020
https://doi.org/10.5194/epsc2020-488
Europlanet Science Congress 2020
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Sizes of Particles, Clumps, and Gaps Within the Strong Janus 2:1 and Mimas 5:3 Density Waves from Cassini UVIS Stellar Occultation Data Statistics

Stephanie Eckert1, Joshua Colwell1, Richard Jerousek1, and Larry Esposito2
Stephanie Eckert et al.
  • 1University of Central Florida, Orlando, FL, United States
  • 2Laboratory for Atmospheric and Space Physics, Boulder, CO, United States

The high-speed photometer of Cassini’s Ultraviolet Imaging Spectrograph (UVIS) collected data from stellar occultations across Saturn’s rings at unprecedented high resolution over a wide range of viewing geometries. Because photon counts are described by Poisson statistics, we expect a variance equal to the mean in the absence of intervening ring material. However, most ring ‘particles’ are truly aggregates of smaller particles, ranging from micron-size dust to tens of meter-sized boulders, and if the sizes of these aggregates are not small relative to the field-of-view over a single integration period, they introduce excess variance from which we can glean further information about the sizes of particles and clumps. This is particularly relevant in the A ring, where non-axisymmetric self-gravity wakes are ubiquitous. Larger elongated clumps nicknamed straw have been directly imaged in the troughs of strong density waves (Porco et al., 2005, Science, 307, 1226-1236). In this work we present a survey of the statistical moments of variance and skewness for several ring stellar occultations at two strong density waves from different ring regions, Janus 2:1 and Mimas 5:3, over a variety of viewing angles. The line-of-sight distance from Cassini to the rings affects the measurement area due to the scattered signal and diffraction, and different viewing angles provide measurements of the same ring material with different aspects to potentially reveal the three-dimensional structure of clumps. We calculate an effective particle size per integration area, R, derived by Colwell et al., (2018, Icarus, 300, 150-166) and find similar values for R in both peaks and troughs across density waves as well as within density waves and in adjacent regions. We observe strong statistical similarity between troughs and regions adjoining the waves with overall higher skewness in the A ring, indicating more clumping and greater asymmetry in this region than in the inner B ring region.

How to cite: Eckert, S., Colwell, J., Jerousek, R., and Esposito, L.: Sizes of Particles, Clumps, and Gaps Within the Strong Janus 2:1 and Mimas 5:3 Density Waves from Cassini UVIS Stellar Occultation Data Statistics, Europlanet Science Congress 2020, online, 21 September–9 Oct 2020, EPSC2020-488, https://doi.org/10.5194/epsc2020-488, 2020