Outburst and Splitting of Interstellar Comet 2I/Borisov

David Jewitt1, Yoonyoung Kim2, Max Mutchler3, Harold Weaver4, Jessica Agarwal5, and Man-To Hui6

1University of California at Los Angeles (jewitt@ucla.edu)
2Max Planck, Gottingen
3Space Telescope Science Institute
4Johns Hopkins University, Applied Physics Laboratory
5Technical University at Braunschweig
6University of Hawaii

We present Hubble Space Telescope observations of a photometric outburst and splitting event in interstellar comet 2I/Borisov. The outburst, first reported with the comet outbound at 2.8 AU (Drahus et al.~2020), was caused by the expulsion of solid particles having a combined cross-section about 100 sq. km and a mass in 0.1 mm sized particles 2×10^7 kg. The latter corresponds to 1×10^{-4} of the mass of the nucleus, taken as a sphere of radius 500 m. A transient double nucleus was observed on UT 2020 March 30 (about three weeks after the outburst), having a cross-section 0.6 sq. km and corresponding dust mass 1×10^5 kg. The secondary was absent in images taken on and before March 28, and in images taken on and after April 03. The unexpectedly delayed appearance and rapid disappearance of the secondary are consistent with an origin through rotational bursting of one or more large (meter-sized) boulders under the action of outgassing torques, following their ejection from the main nucleus. Overall, our observations reveal that the outburst and splitting of the nucleus are minor events involving a negligible fraction of the total mass: 2I/Borisov will survive its passage through the planetary region largely unscathed.