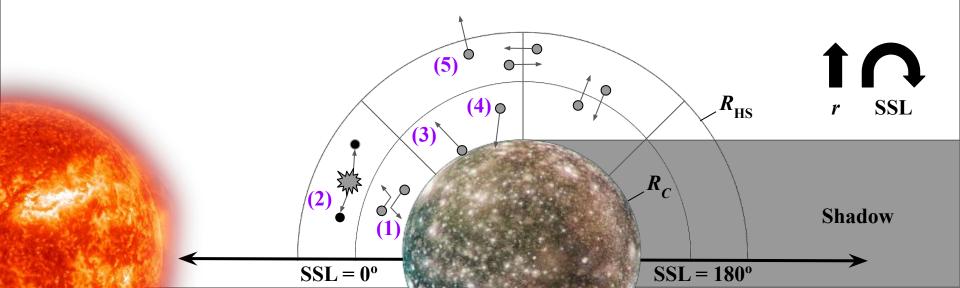
# Models of Callisto's atmosphere composed of sublimated water vapor and radiolytic and photochemical products



**Shane Carberry Mogan**<sup>*a,b,\**</sup>, Orenthal Tucker<sup>*c*</sup>, Robert Johnson<sup>*a,d*</sup>, Audrey Vorburger<sup>*e*</sup>, Andre Galli<sup>*e*</sup>, Lorenz Roth<sup>*f*</sup>, Angelo Tafuni<sup>*g*</sup>, Sunil Kumar<sup>*b*</sup>, Iskender Sahin<sup>*a*</sup>, Katepalli Sreenivasan<sup>*a,b*</sup>

<sup>*a*</sup>New York University, New York, USA; <sup>*b*</sup>New York University Abu Dhabi, Abu Dhabi, UAE; <sup>*c*</sup>NASA Goddard Space Flight Center, Greenbelt, USA; <sup>*d*</sup>University of Virginia, Charlottesville, USA; <sup>*e*</sup>University of Bern, Bern, Switzerland; <sup>*f*</sup>KTH Royal Institute of Technology, Stockholm, Sweden; <sup>*g*</sup>New Jersey Institute of Technology, Newark, USA; **\*ShaneRCM@NYU.edu** 


<u>Summary:</u> The spatial morphology of the H corona detected at Callisto [1] is used to place constraints on the *undetected* sublimated  $H_2O$  & radiolytically produced  $H_2$  components of Callisto's atmosphere via 2D Direct Simulation Monte Carlo (DSMC) simulations [2].

#### Takeaways: The observed H morphology

- > <u>cannot</u> be explained if sublimated  $H_2O$  is the primary source, regardless if ice and dark, non-ice/ice-poor surface materials are assumed to be intimately mixed or segregated into patches.
  - The  $O_2$  component can scatter H produced by  $H_2O$ .
  - A collisional  $H_2$  component can significantly inflate the H produced by  $H_2O$ .
- <u>can</u> be explained if a global radiolytic H<sub>2</sub> component is the primary source [3].

## THE DIRECT SIMULATION MONTE CARLO (DSMC) METHOD

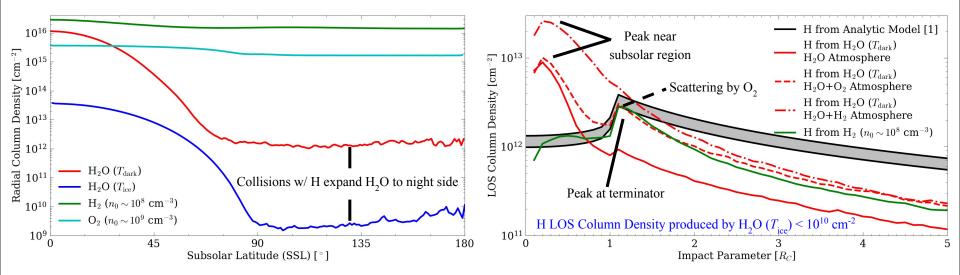
- \* A **2D** spherical grid is composed of cells along radial (r) and subsolar latitudinal (SSL) axes
  - > Callisto's surface,  $R_c = 2410$  km
  - > Callisto's Hill sphere,  $R_{\rm HS} \sim 20.8 R_C$
- Particles subject to gravity, collisions (1), and photochemical processes (2) are tracked
- Production: sublimation/thermal desorption (3) & photodissociation (2)
- Loss: condensation (4), escape (5), & photochemical destruction (2)



## **BACKGROUND WORK: DSMC MODELS OF CALLISTO'S ATMOSPHERE**

- Carberry Mogan et al. (2020) [4]: 1D DSMC models demonstrated importance of collisions & escape in Callisto's atmosphere composed of radiolytic products CO<sub>2</sub>, O<sub>2</sub>, and H<sub>2</sub>.
- Carberry Mogan et al. (2021) [3]: 2D DSMC models included a diurnal temperature gradient from 155 K (subsolar point) to 80 K (anti-solar point) and a sublimated H<sub>2</sub>O component.
  - > Left: Sublimated  $H_2O$  density: extremely sensitive to Callisto's day-side temperatures
  - > *Right*: Local production of H from sublimated  $H_2O$  & radiolytic  $H_2$  over surface density ( $n_0$ ) range




## **MODELING THE H CORONA: PHOTOCHEMICAL PROCESSES**

- **2D DSMC** models of H produced via *photodissociation* of sublimated H<sub>2</sub>O and radiolytic H<sub>2</sub>
- 2 different surface models of ice & dark, non-ice/ice-poor material are considered
  - 1. Intimately mixed [5]: H<sub>2</sub>O sublimates at warm day-side temperatures (e.g., [3, 6-8]), T<sub>dark</sub>
  - 2. Segregated into patches [9]:  $H_2O$  sublimates at Callisto's "ice" temperatures [10],  $T_{ice}$



\* Global radiolytic H<sub>2</sub> (surface density:  $n_0 \sim 10^{6-8}$  cm<sup>-3</sup>) and O<sub>2</sub> (surface density:  $n_0 \sim 10^9$  cm<sup>-3</sup>) components are assumed to be in steady-state (e.g., [3, 4])

- Left: Radial column densities of thermal H<sub>2</sub>O, H<sub>2</sub>, and O<sub>2</sub>
  - > Density of  $H_2O$  depends strongly on surface model
- **Right:** H Line-of-sight (LOS) column densities from DSMC models vs. analytic model [1]
  - > H produced by  $H_2O$  has highly asymmetric distribution and a LOS peak on the disk
    - Scattering by O<sub>2</sub> generates a second, smaller LOS peak at the limb
  - H produced by  $H_2$  has a roughly global distribution and a LOS peak at limb



## CONCLUSIONS

- **H** produced only by H<sub>2</sub>O does not produce observed maximum LOS column at the terminator.
  - > This is true whether ice and dark materials are segregated into patches or intimately mixed.
  - >  $H_2O + H$  collisions can inflate the  $H_2O$  component and generate  $H_2O$  corona.
  - >  $\tilde{Aglobal O_2}$  component can scatter  $\tilde{H}$  produced by  $H_2O_2$ .
  - > A collisional  $(n_0 \sim 10^8 \text{ cm}^{-3}) \text{ H}_2$  component can inflate the H produced by H<sub>2</sub>O.
- Consistent with observation, maximum LOS column of H from H<sub>2</sub> occurs at the terminator.
  - Radiolytic  $H_2$  with the  $H_2O$  segregated into patches is the best case to reproduce observations.
  - > Influence of  $\overline{H}_{2}$ , could be detected in forthcoming observations & missions.
- Simulations including electron impact dissociation of  $H_2$  and  $H_2O$ , as additional sources of H, are now being prepared, which would reduce the required  $H_2$  density.

**REFERENCES:** [1] Roth, L. et al., 2017: Detection of a hydrogen corona at Callisto. *Journal of Geophysical Research: Planets*. [2] Bird, G. A., 1994: *Molecular gas dynamics and the direct simulation of gas flows*. Oxford: Clarendon press. [3] Carberry Mogan, S.R., et al., 2021. A tenuous, collisional atmosphere on Callisto. *Icarus*. [4] Carberry Mogan, S.R., et al., 2020. The influence of collisions and thermal escape in Callisto's atmosphere. *Icarus*. [5] Clark, R.N., 1980. Ganymede, Europa, Callisto, and Saturn's rings: Compositional analysis from reflectance spectroscopy. *Icarus*. [6] Liang, M.C., et al., 2005. Atmosphere of Callisto. *Journal of Geophysical Research: Planets*. [7] Vorburger, A., et al., 2015. Monte-Carlo simulation of Callisto's exosphere. *Icarus*. [8] Hartkorn, O., Saur, J. and Strobel, D.F., 2017. Structure and density of Callisto's atmosphere from a fluid-kinetic model of its ionosphere: Comparison with Hubble Space Telescope and Galileo observations. *Icarus*. [9] Spencer, J.R., 1987. Thermal segregation of water ice on the Galilean satellites. *Icarus*. [10] Grundy, W.M., et al., 1999. Near-infrared spectra of icy outer solar system surfaces: Remote determination of H2O ice temperatures. *Icarus*.