Europlanet Science Congress 2021
Virtual meeting
13 – 24 September 2021
Europlanet Science Congress 2021
Virtual meeting
13 September – 24 September 2021

Session programme

OPS

OPS – Outer Planet Systems

Programme group coordinators: Frank Postberg, Federico Tosi

OPS1

Saturn's moon Titan, despite its satellite status, has nothing to envy to planets: it has planetary dimensions, a substantial and dynamic atmosphere, a carbon cycle, a variety of geological features (dunes, lakes, rivers, mountains and more), seasons, and a hidden ocean. It even now has its own mission: Dragonfly, selected by NASA in the frame of the New Frontiers program.
In this session, scientific presentations are solicited to cover all aspects of current research on Titan: from its interior to its upper atmosphere, using data collected from the Cassini-Huygens mission (2004-2017) and/or from ground-based telescopes (e.g., ALMA) and/or based on modelling and experimental efforts to support the interpretation of past and future observations of this unique world.

Convener: Anezina Solomonidou | Co-conveners: Sam Birch, Alice Le Gall, Shannon M. MacKenzie, Marco Mastrogiuseppe
OPS2

The exploration of the outer solar system by Galileo at Jupiter, Cassini-Huygens at Saturn, New Horizons at Pluto-Charon and Dawn at Ceres, has revealed that several icy worlds harbor subsurface salty liquid reservoirs underneath their cold surface. By flying through the icy-vapor plume erupting from Enceladus' south pole, Cassini proceeded for the first time to the analysis of fresh materials coming from an extraterrestrial ocean, revealing its astrobiological potentials. Even if there is no direct evidence yet, similar oceanic habitats might also be present within Europa, Ganymede, Titan and Triton, which will be characterized by future missions currently under development (JUICE, Europa Clipper, Dragonfly), or under study (Europa Lander, Trident, Enceladus orbiter/lander mission). Understanding these icy ocean worlds and their connections with smaller icy moons and rings requires input from a variety of scientific disciplines: planetary geology and geophysics, atmospheric physics, life sciences, space weathering, as well as supporting laboratory studies, numerical simulations, preparatory studies for future missions and technology developments in instrumentation and engineering. We welcome abstracts that span this full breadth of disciplines required for the characterization and future exploration of icy world systems.

Co-organized by MITM
Convener: Gabriel Tobie | Co-conveners: Carly Howett, Alice Lucchetti, Frank Postberg, Federico Tosi
OPS3

This session will cover all aspects of ice giant (IG) systems including (but not limited to) the atmospheric structure and composition, magnetospheres, interiors, satellites, and rings of the IGs. Interdisciplinary, crosscutting themes of ice giant planet exploration, such as the relationship to exoplanetary science and connections to heliophysics are also included in the session. The session will comprise a combination of solicited and contributed oral and poster presentations on new, continuing, and future studies of the ice giant systems and the importance of the ice giants to models of the formation and evolution of the giant planets and solar systems. We welcome abstracts that
• Address the current understanding of ice giant systems, including atmospheres, interiors, magnetospheres, rings, and satellites including Triton.
• Advance our understanding of the ice giant systems in preparation for future exploration, both by remote sensing and in situ.
• Discuss what the ice giants can tell us about solar system formation and evolution leading to a better understanding of the current structure of the solar system and its habitable zone as well as extrasolar systems.
• Address outstanding science questions requiring future investigations including from spacecraft, remote sensing, theoretical, and laboratory work necessary to improve our knowledge of the ice giants and their relationship to the gas giants and the solar system.
• Present concepts of missions, instruments and investigations relevant to future exploration of the ice giant planetary systems.

Co-organized by MITM
Convener: David H. Atkinson | Co-conveners: Sushil K. Atreya, Thibault Cavalié, Leigh Fletcher, Mark Hofstadter, Jean-Pierre Lebreton, Kathleen Mandt, Olivier Mousis, Alena Probst
OPS4

The Juno mission is providing crucial new data sets addressing Jupiter's interior, atmosphere and magnetosphere that challenge current theories of formation, evolution and dynamics of both Jupiter and giant planets in general. The Juno results when combined with data sets from previous missions such as Cassini, Galileo, and Voyager as well as exoplanet observations and models, is providing a new opportunity for the study of comparative planetology. This session welcomes contributions on a wide variety of topics regarding Jupiter, Saturn and giant planets in general: gravity and magnetic field analysis and interpretation, giant planet magnetospheres, aurorae, radiation environments, atmospheric dynamics, planet interiors and satellite interactions. The session also welcomes remote observations acquired in support of Juno and Cassini, and discussions of formation scenarios and evolutionary pathways of planetary bodies in our Solar System and beyond.

Convener: Yasmina M Martos | Co-conveners: Arrate Antunano, Scott Bolton, Bertrand Bonfond, George Clark, Stavros Kotsiaros, Yamila Miguel
OPS5

Atmospheric aerosols and cloud particles are found in every atmosphere of the solar system, as well as, in exoplanets. Depending on their size, shape, chemical composition, latent heat, and distribution, their effect on the radiation budget varies drastically and is difficult to predict. When organic, aerosols also carry a strong prebiotic interest reinforced by the presence of heavy atoms such as nitrogen, oxygen or sulfur.

The aim of the session is to gather presentations on these complex objects for both terrestrial and giant planet atmospheres, including the special cases of Titan’s and Pluto's hazy atmospheres. All research aspects from their production and evolution processes, their observation/detection, to their fate and atmospheric impact are welcomed, including laboratory investigations and modeling.

Co-organized by TP/EXO
Convener: Panayotis Lavvas | Co-conveners: Nathalie Carrasco, Anni Määttänen
OPS6

This session focuses on the environments of outer planet moons: their atmospheres, ionospheres, plumes, aurora, magnetic fields, magnetospheric environments and moon-magnetosphere interactions. Abstracts on all outer planet moons are welcome, including the moons of Saturn and Jupiter (e.g. Enceladus, Titan, Io, Europa, Ganymede, and Callisto) and the less explored moons of Uranus and Neptune (e.g. Oberon and Triton).
Suggested topics include but are not limited to: atmospheric/ionospheric structures and compositions, plume detections and simulations, surface charging, auroral radio emissions, moon-magnetosphere interaction (e.g. wave-particle processes, particle acceleration, MHD turbulence), variability in the field and particle environments of the moons, opportunities and limitations of future JUICE and Europa Clipper measurements.
We welcome abstracts addressing the environments of outer planet moons from all disciplines, including in-situ and remote sensing data analysis, modeling and simulation results, ground-based observations and Earth-orbit-based observations. Relevant abstracts include results from past and current missions, such as Voyager, Galileo, Cassini-Huygens, Hisaki, and Juno, and studies in preparation for future missions such as JUICE and Europa Clipper.

Co-organized by MITM
Convener: Mika Holmberg | Co-conveners: Aljona Blöcker, Hans Huybrighs, Ronan Modolo, Oleg Shebanits, Ali Sulaiman
SB10

Thanks to the advancement of observational techniques from Earth and space, our knowledge of planetary ring systems and protoplanetary disks has greatly improved. While these two classes of objects differ by orders of magnitude in dimension and evolutionary stage, they offer a unique opportunity to investigate common dynamical processes that can shed light on the formation, composition and evolution of planetary systems. Although rings are common companions of the outer planets in our solar system, so far we do not yet have firm evidence of similar structures around exoplanets. In this respect, the characteristics of solar system rings can be used as a benchmark to tune ongoing exo-ring surveys. Conversely, high-angular resolution images obtained with new instruments such as the ALMA interferometer and SPHERE on VLT have revealed that protoplanetary discs are also characterized by substructures such
as gaps and narrow rings. The formation of these rings can be explained by the dynamical interaction of the gas and dust in the disc with one or more embedded planets. Similar processes are also common in planetary rings, as revealed by the unprecedented spatial
resolution of Cassini observations at Saturn. In this session we invite abstracts related to both theoretical and observational studies of
planetary rings and protoplanetary disks, as well as exo-ring research.

Co-organized by OPS/EXO
Convener: Philip D. Nicholson | Co-conveners: Gianrico Filacchione, Linda Podio, Claudia Toci
TP5

Astrobiology is the study of whether present or past life exists elsewhere in the universe. To understand how life can begin in space, it is essential to know what organic compounds were likely available, and how they interacted with the planetary environment. This session seeks papers that offer existing/novel theoretical models or computational works that address the chemical and environmental conditions relevant to astrobiology on terrestrial planets/moons or ocean worlds, along with other theoretical, experimental, and observational works related to the emergence and development of Life in the Universe. This includes work related to prebiotic chemistry, the chemistry of early life, the biogeochemistry of life’s interaction with its environment, chemistry associated with biosignatures and their false positives, and chemistry pertinent to conditions that could possibly harbor life (e.g. Titan, Enceladus, Europa, TRAPPIST-1, habitable exoplanets, etc.). Understanding how the planetary environment has influenced the evolution of life and how biological processes have changed the environment is an essential part of any study of the origin and search for signs of life. Earth analogues experiments/instruments test and/or simulation campaigns and limits of life studies are included as well as one of the main topics of this session. Major Space Agencies identified planetary habitability and the search for evidence of life as a key component of their scientific missions in the next two decades. The development of instrumentation and technology to support the search for complex organic molecules/sings of life/biosignatures and the endurance of life in space environments is critical to define unambiguous approaches to life detection over a broad range of planetary environments.

Co-organized by OPS/EXO
Convener: Felipe Gómez | Co-convener: Pamela Conrad
SB9

The goal of this session is to cover numerical simulations and relevant laboratory investigations related to the Small Bodies (comets, KBOs, rings, asteroids, meteorites, dust), their formation and evolution, and the instruments of their exploration. This session is specially focused on the interdisciplinary approach in the development of models (formal descriptions of physical phenomena), experiments (on ground and in micro-gravity), and mathematical simulations (computational methods and algorithms of solution) of various astrophysical phenomena: (i) dusty gas cometary atmospheres; (ii) volcanic activity on icy satellites (e.g. Enceladus and Io); (iii) planetary body formation (e.g. via pebbles growth), and planetesimal dynamics.

This session will include an introduction and discussion of new and/or existing laboratory studies in simulated space-like environments and models, experimental techniques, computational methods that can address the results of analytical, experimental and numerical analysis (with respect to computational methods and algorithms of solution) on the above described studies.

Abstracts on thermophysical evolution models of small bodies interiors as well as on the modeling of atmosphere and exosphere are welcome.

Co-organized by OPS
Convener: Vladimir Zakharov | Co-conveners: Vincenzo Della Corte, Marco Fulle, Stavro Lambrov Ivanovski, Raphael Marschall, Alessandra Rotundi, Diego Turrini
TP4

Impact processes shaped the Solar System, and modify planetary surfaces and small bodies until today. Impacts also have a technical application for Planetary Defence, exemplified by the joint ESA/NASA Asteroid Impact and Deflection Assessment (AIDA) collaboration. This session aims at understanding impact processes at all scales in terms of shock metamorphism, dynamical aspects, geochemical consequences, environmental effects and biotic response, and cratering chronology. Naturally, advancing our understanding of impact phenomena requires a multidisciplinary approach, which includes (but it is not limited to) observations of craters, strewn field or airbursts, numerical modelling, laboratory experiments, geologic and structural mapping, remote sensing, as well as petrographic and geochemical analysis of impact products.

We welcome presentations across this broad range of studies about natural or artificial impact collision phenomena on planetary and small bodies. In particular, we encourage work that bridges the gap between the investigative methods employed in studying planetary impact processes at all scales.

Co-organized by OPS/SB
Convener: Elena Martellato | Co-conveners: Chrysa Avdellidou, Christopher Hamann, Isabel Herreros, Robert Luther, Jens Ormö
TP8

The surfaces of air-less celestial bodies are directly exposed to the environmental radiation, ions, and micrometeoroids. The result of these interactions is an alteration of the surface structure and chemical composition, generally referred to as space weathering. At the same time, these interactions release surface material that refills the surface-bounded exosphere and, directly or indirectly, is a source of planetary ions in the environment. The study of the planetary response to variable external conditions is the broad meaning of planetary space weather.
Over the next decade, the BepiColombo mission to Mercury and JUICE mission to Jupiter’s system, together with the Moon space exploration program, will offer unprecedented opportunities to investigate the interaction processes at airless bodies.
In the present session, we welcome observation-driven, theoretical, and experimental studies
• on all the air-less bodies interacting with solar wind (like Mercury, Moon and asteroids) or with magnetospheric ions (outer planets icy moons);
• on micrometeoroid gardening and impact vaporization effects onto the surface and onto the exosphere;
• on the effects of other agents like photons, electrons, and high-energy particles;
• on laboratory experiments for investigating surface release processes and surface modifications.
• on spectral measurements of various planetary analogous undergone space weathering processes.

Co-organized by OPS
Convener: Anna Milillo | Co-conveners: Sae Aizawa, André Galli, Indhu Varatharajan
TP7

In the latest years, many spacecraft missions operating in the Solar System are collecting data from the many regions of the heliosphere, sensibly increasing the scientific return of each mission, and providing additional opportunities for synergistic data acquisitions from environments and conditions that are different from each mission’s original baseline science operation plan.
In addition, coordinated observations among different spacecraft is allowing to perform valuable investigations of the heliosphere from different point of view at the same time; thereby addressing many aspects of plasma processes related to the Sun, as well as the interactions of the solar wind and radiation with the planetary environments.
A bright example is the Venus atmosphere and magnetosphere investigations recently performed by BepiColombo, Parker Solar Probe and Solar Orbiter during their flybys around the planet, as well as their coordination with Akatsuki spacecraft orbiting around Venus itself, and with other spacecraft during their cruise measurements and with space and Earth-based telescope observations made jointly.
In this session, we welcome contributions to any kind of planetary and Solar System investigations made by space missions during their cruise and flybys operations. They may include the present flybys to Earth and Venus by BepiColombo, Solar Orbiter and Parker Solar Probe, but also future flybys investigations that will be made by future missions (i.e. JUICE); lessons learnt from past flybys to other planets such as the Rosetta flyby to Mars, the Earth and Venus flybys from Cassini or the legacy of the flybys to the Giant planets made by the Voyager missions.

Co-organized by OPS/MITM
Convener: Valeria Mangano | Co-conveners: Lina Hadid, Kandis Lea Jessup, Yeon Joo Lee, Beatriz Sanchez-Cano, Yannis Zouganelis
TP1

Shape, gravity field, orbit, tidal deformation, and rotation state are fundamental geodetic parameters of any planetary object. Measurements of these parameters are prerequisites for e.g. spacecraft navigation and mapping from orbit, but also for modelling of the interior and evolution. This session welcomes contributions from all aspects of planetary geodesy, including the relevant theories, observations and models in application to planets, satellites, ring systems, asteroids, and comets.

Co-organized by OPS/SB
Convener: Alexander Stark | Co-conveners: Hannah Susorney, Anton Ermakov, Marie Yseboodt
MITM2

This merged session welcomes a broad range of presentations about future missions and instrumentation, and has a particular focus on small satellites. Recent advances in small platforms make it possible for small satellites, including CubeSats, to be considered as independent or complementary elements in planetary exploration missions, for example the small probes as part of the Hayabusa 2, DART and Hera mission. Presentations on Deep Space Planetary CubeSats, e.g. the small satellites accompanying the F-class ESA mission Comet Interceptor and those selected or proposed for the NASA SIMPLEX program are welcomed. Concepts for future mission may either be an augmentation to larger missions or as stand-alone missions of their own. We encourage presentations on new Planetary science mission architectures and associated technologies, as well as dedicated instrumentation that can be developed for these applications.

Co-organized by TP/OPS/SB
Conveners: Patricia Beauchamp, John Robert Brucato | Co-conveners: Marilena Amoroso, Vincenzo Della Corte, Iaroslav Iakubivskyi, Simone Pirrotta, Michel Blanc, Manuel Scherf, Thomas Smith
KT2

Giant planet upper atmospheres are the intervening regions between planetary weather layers below and their space environments above. As a result of their exceptionally rarefied nature, they are highly sensitive probes of the forcing exerted from below and above. In this Keynote talk I will introduce and discuss some of the latest results related to giant planet upper atmospheres. I will highlight topics such as the giant planet "energy crisis", a decades-old
problem in which the (non-auroral) upper atmospheres of all giant planets have been measured hundreds of Kelvin warmer than expected, and how Saturn's upper atmosphere is revealing the decay of its ring system into the planet.

Co-organized by OPS
Convener: Federico Tosi
Fri, 17 Sep, 09:50–10:20 (CEST)
KT7

Juno has transformed our view of Jupiter through major discoveries about its interior structure, origin, and evolution; atmospheric dynamics and composition; magnetic dynamo; and polar magnetosphere. Juno’s extended mission began August 1, 2021 and includes new measurements that are enabled by Juno’s orbital evolution, addressing discoveries from the prime mission and new objectives that reach beyond the planet itself to the Galilean satellites and Jupiter’s enigmatic ring system. An overview of Juno’s discoveries that have changed our understanding of Jupiter and giant planets will be presented along with plans for Juno’s extended mission of to investigate Jupiter’s system.

Public information:

Link to this live session will be made available at 17:20.

Co-organized by OPS
Convener: Frank Postberg
Tue, 21 Sep, 17:30–18:00 (CEST)