Europlanet Science Congress 2022
Palacio de Congresos de Granada, Spain
18 – 23 September 2022
Europlanet Science Congress 2022
Palacio de Congresos de Granada, Spain
18 September – 23 September 2022
EPSC Abstracts
Vol. 16, EPSC2022-271, 2022, updated on 06 Mar 2024
https://doi.org/10.5194/epsc2022-271
Europlanet Science Congress 2022
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Explaining transition disks without massive planets

Matías Gárate1, Paola Pinilla1,3, Til Birnstiel2, Barbara Ercolano2, Sebastian M. Stammler2, Giovanni Picogna2, Timmy N. Delage1, Jochen Stadler1, Raphael Franz2, Sean Andrews4, and Anna Miotello5
Matías Gárate et al.
  • 1Max-Planck-Institut für Astronomie, Heidelberg, Germany (garate@mpia.de)
  • 2Universitäts-Sternwarte München, Ludwig-Maximilians-Universität München, München, Germany
  • 3Mullard Space Science Laboratory, University College London, London, United Kingdom
  • 4Smithsonian Institution's Astrophysical Observatory, Center for Astrophysics | Harvard & Smithsonian, Cambridge MA, United States
  • 5ALMA Regional Centre, European Southern Observatory, Garching, Germany

Transition disks are one of the enigmas of the planet formation process: These objects typically feature wide gaps in the dust component, along with deficit of NIR emission corresponding to a lack of small grains in the inner regions, but simultaneously require a gas rich inner disk capable of sustaining high accretion rates, and a high content of pebble sized grains to explain the emission detected in the millimeter continuum.
Massive planets of several Jupiter masses have been long proposed as an explanation for these objects. However, despite the efforts to find these giants, only one or two disks have confirmed detections of a planetary companion. We propose a new hybrid model that easily explain the properties of transition disks, by combining the contributions made by different research groups over the last decade in photoevaporation, dead zones, and dust trapping. In our model photoevaporation takes care of opening a cavity in the gas and dust component, while dead zones in the inner regions lead to long lived-inner disk, capable of sustaining the observed accretion rates during the photoevaporative dispersal process. Finally, dust trapped in moderate substructures (such as the ones caused by small Saturn mass planets) can explain the emissions found in the millimeter continuum, without imposing strong constrains on the planet location.
With our model we show that instead of invoking massive fine-tuned planets to explain all the transition disk properties, the different processes that occur in protoplanetary disks complement each other and naturally reproduce the transition disk observations. Then, perhaps the reason of why we don't find more hidden massive planets is, simply, because they are not there.

How to cite: Gárate, M., Pinilla, P., Birnstiel, T., Ercolano, B., Stammler, S. M., Picogna, G., Delage, T. N., Stadler, J., Franz, R., Andrews, S., and Miotello, A.: Explaining transition disks without massive planets, Europlanet Science Congress 2022, Granada, Spain, 18–23 Sep 2022, EPSC2022-271, https://doi.org/10.5194/epsc2022-271, 2022.

Discussion

We are sorry, but the discussion is only available for users who registered for the conference. Thank you.