Europlanet Science Congress 2022
Palacio de Congresos de Granada, Spain
18 – 23 September 2022
Europlanet Science Congress 2022
Palacio de Congresos de Granada, Spain
18 September – 23 September 2022
PG selection

Abstracts with displays | MITM

MITM5 | Machine Learning in Planetary Sciences

L1.116
|
EPSC2022-680
|
ECP
Mireia Leon-Dasi, Sébastien Besse, and Alain Doressoundiram

Evidence of explosive volcanism on the surface of Mercury has been identified in the form of vents and pyroclastic deposits using images and spectral data acquired by the MESSENGER mission (Goudge et al. 2014, Thomas et al. 2014, Jozwiak et al. 2018, Pegg et al. 2021). Understanding the history of the volcanic eruptions forming these features provides an insight in the geological and thermal evolution of the planet. To this end, it is important to constrain the characteristics of each vent and, correlating them with the environment, classify the features according to their age and geological conditions. An individual analysis of a selection of vents has been carried out by Barraud et al. 2021 and Besse et al. 2015, providing new insights on the size, volcanic content and spectral properties of these features. However, performing a global analysis presents further challenges.  The collection of volcanic features identified presents a wide variety of characteristics in terms of morphology (simple vent, pit vent, vent-with-mound etc.), shape (circular, elliptical, curved), location (crater centre, crater rim, inter-crater plain), distribution (isolated or compound) and spectral properties of the pyroclastic deposit. This introduces a large number of variables that complicate the characterisation and timing of volcanic eruptions. 

The vast amount of data returned by the MESSENGER mission offers both a challenge and an opportunity in the methodology to solve this problem. While the combination of a large number of observations from different instruments can complicate the physical interpretation of a given process, it opens the door to the use of machine learning techniques. These methods rely on the identification of patterns on the input data without considering the associated physics, with the aim to reveal underlying correlations that can then be related to physical and chemical phenomena. This technique has been applied to the entire dataset collected by the Mercury Atmospheric and Surface Composition Spectrometer (MASCS), to classify the visible-near-infrared reflectance spectra into three categories (D'Amore et al. 2022). 

In this work, we investigate the application of machine learning to explore the differences amongst the pyroclastic deposits and volcanic vents, with the aim of improving the understanding on the evolution of explosive volcanism in Mercury. In this methodology we combine data from the MASCS and the Mercury Laser Altimeter (MLA) instruments with other properties of the vent surroundings (e.g., crustal thickness). By treating unrelated physical variables together as components of the same input vector, the outcome is a set of dimensions that have no direct physical meaning but can uncover underlying structures to be later physically or chemically interpreted. 

How to cite: Leon-Dasi, M., Besse, S., and Doressoundiram, A.: Exploring the diversity in pyroclastic deposits and volcanic vents on Mercury with machine learning techniques, Europlanet Science Congress 2022, Granada, Spain, 18–23 Sep 2022, EPSC2022-680, https://doi.org/10.5194/epsc2022-680, 2022.

L1.117
|
EPSC2022-1066
|
ECP
Nikolaj Dahmen, John Clinton, Men-Andrin Meier, Simon Stähler, Doyeon Kim, Alex Stott, and Domencio Giardini

InSight seismic data and marsquake catalogue

NASA's InSight seismometer has been recording the seismicity of Mars for over 3 years and to date, over 1300 seismic events were found by the Marsquake Service (MQS) [1,2]. Marsquakes usually have a low signal-to-noise ratio (SNR) and are consequently often hidden or contaminated by the background noise, making their detection and analysis challenging. Local winds interact with the lander and seismometer system and generate noise levels that fluctuate throughout the Martian day and regularly exceed typical event amplitudes. Additionally, extreme temperature changes cause transient high-amplitude spikes [3]. Conventional tools, such as the STA/LTA detectors, perform poorly on this dataset, as the various noise signals often share a common bandwidth and can be similar in duration to marsquakes [3]. Therefore, MQS detects events by manual data review and discriminates them from wind noise [4] by comparing the seismic data to onboard wind measurements if available, or otherwise, to the excitation of wind-driven lander modes. MQS classifies events by their frequency content into low- (<10%) and high-frequency (>90%) event families and assigns a quality based on their locatability (A: highest to D: lowest quality) [1].

Marsquake detection with convolutional neural network

Deep learning methods, and in particular convolutional neural networks (ConvNet) are nowadays routinely used for complex tasks such as speech or visual object recognition [5]. Here, we use a ConvNet architecture designed for image segmentation [6] to detect marsquake energy in the time-frequency domain. We train the ConvNet to predict segmentation masks that pixel-wise identify event and noise energy based on the time-frequency representation of a given waveform. We use the method to detect marsquakes and to decompose their signal in event and noise components. This allows us to estimate the marsquake duration, frequency content, and SNR.  We use the ConvNet to extend the MQS catalogue and further highlight its value in removing noise contamination from marsquakes [7]. Since the MQS catalogue is much smaller than typically labelled datasets used in deep learning [7], we create a training set with synthetic events with stochastic waveform modelling [8]. Synthetic events mimic the different MQS event types in terms of frequency content and duration and are combined with recorded InSight noise to include all types of noise.

Results

We run our ConvNet-based detector on the complete 20 samples-per-second dataset (over 900 Martian days) and compare our results to the careful manually curated MQS catalogue: we can detect all high-quality events and the majority of low-quality events - in addition to these, we find many additional low SNR events. We extend the catalogue by ~50% more events, of which the majority belongs to the high-frequency event family. An overview of the MQS events and our new detections is given in Figure 1. Similar to the MQS catalogue, we find many events in the quiet evening periods during the spring and summer of the Martian year 1 and 2, and further increase the number of events during the nights when noise levels are elevated. During the high noise periods (day time and winter), when noise amplitudes are orders of magnitudes above typical event amplitudes, we do not confidently detect events apart from a few that fall into short quieter periods. Our results suggest that the MQS catalogue is essentially complete for high SNR events and further support previous findings [9] on the seasonality of high-frequency events and their increased activity in Martian year 2 compared to year 1.

 

Figure 1: Overview of seismic noise, catalogued MQS events and new detections from ConvNet: the background of the main figure represents the broadband, vertical component seismic noise level (data gaps shown in white). The symbols indicate different event types belonging to the low frequency (LF, BB) or high frequency family (2.4, HF, VF), and colours indicate the qualities in the MQS catalogue; new detections found with our ConvNet detector are shown with their predicted event family type. The panel on the left side shows the cumulative event count using MQS events (blue) and MQS events and new detections (red). The event numbers are dominated by the high frequency events (corresponding to over 90% of events).

References:

[1] Clinton et al. (2021), 10.1016/j.pepi.2020.106595

[2] InSight Marsquake Service (2022), doi.org/10.12686/a16

[3] Ceylan et al. (2021), 10.1016/j.pepi.2020.106597

[4] Charalambous et al. (2021) 10.1029/2020JE006538

[5] LeCun et al. (2015), 10.1038/nature14539

[6] Ronneberger et al. (2015), 10.1007/978-3-319-24574-4_28

[7] Zhu et al. (2019), 10.1109/TGRS.2019.2926772

[8] Boore (2003), 10.1007/PL00012553 

[9] Knapmeyer et al. 10.1016/j.epsl.2021.117171

How to cite: Dahmen, N., Clinton, J., Meier, M.-A., Stähler, S., Kim, D., Stott, A., and Giardini, D.: A Deep Marsquake Catalogue, Europlanet Science Congress 2022, Granada, Spain, 18–23 Sep 2022, EPSC2022-1066, https://doi.org/10.5194/epsc2022-1066, 2022.

MITM6 | Planetary space weather

15:30–15:45
|
EPSC2022-493
|
ECP
Fernando Carcaboso, Mateja Dumbović, Manuela Temmer, Raúl Gómez-Herrrero, Stephan Heinemann, Teresa Nieves-Chinchilla, Astrid Veronig, Veronika Jercic, Javier Rodríguez-Pacheco, Karin Dissauer, and Tatiana Podladchikova

On March 12, 2012, a Coronal Mass Ejection (CME) was released from the Sun with a speed of ~2000 km/s. The CME source region was surrounded by three different coronal holes (CHs), located to the East (negative polarity), South-West (positive polarity) and West (positive polarity). Its interplanetary counterpart (ICME) impacted Earth and was in-situ measured by the Advanced Composition Explorer (ACE) / Wind at L1 and the Solar TErrestrial RElations Observatory Ahead (STEREO)-A on March 15th. During this period, the angular separation between the two locations was greater than 100 degrees. Nevertheless, the in-situ measurements revealed almost identical profiles with clear markers of ICME signatures, which is evidence of one of the widest reported multi-spacecraft detection of an ICME, having STEREO-A crossing the west flank and Earth the east flank. Supra-thermal electrons show signatures of bidirectionality and isotropy/simple strahl as  the ICME crosses the different spacecraft, providing information about the eroded parts of the ICME. Certain parts might have been  eroded, possibly due to the interaction with the fast solar wind produced by the nearby CHs. We analysed the propagation of the ICME structure using remote-sensing observations from both STEREOs and Earth together with different in-situ instrumentation at ~1 au, and performed a comparison between the physical properties derived at multiple spacecraft. This study shows the importance of multi-spacecraft observations to understand the large-scale structures of ICMEs, their evolution and interaction, as well as their implications for the space-weather discipline.

How to cite: Carcaboso, F., Dumbović, M., Temmer, M., Gómez-Herrrero, R., Heinemann, S., Nieves-Chinchilla, T., Veronig, A., Jercic, V., Rodríguez-Pacheco, J., Dissauer, K., and Podladchikova, T.: Identical Interplanetary Coronal Mass Ejection Signatures with Wide Angular Separation, Europlanet Science Congress 2022, Granada, Spain, 18–23 Sep 2022, EPSC2022-493, https://doi.org/10.5194/epsc2022-493, 2022.

16:15–16:30
|
EPSC2022-603
|
ECP
Mika K.G. Holmberg, Caitriona Jackman, Matthew G.G.T. Taylor, Olivier Witasse, Jan-Erik Wahlund, Stas Barabash, Nicolas Altobelli, Fabrice Cipriani, Grégoire Déprez, and Hans L.F. Huybrighs

JUICE is ESA’s first large class mission to the outer Solar System. The main objectives of JUICE are to study Jupiter and its space environment with a special focus on Jupiter’s moons Europa, Ganymede, and Callisto, and their potential habitability. In order to fulfil these objectives, the JUICE measurements need to be accurately corrected for any possible perturbations. Here, we present Spacecraft Plasma Interaction Software (SPIS) simulations of the surface charging of JUICE in the solar wind. The results will be used to correct the future JUICE measurements for the impact of the charging. 

We have used a solar wind environment model (i.e. a description of the environment covering typical values for parameters such as electron and ion densities, temperatures, and velocities, magnetic field strengths, and EUV flux) for the location where JUICE will perform its first measurements, between 1500 and 3000 RE from Earth. The typical values for the solar wind parameters and the minimum and maximum values from the expected parameter ranges have been used to simulate the interaction in both average and “extreme” solar wind conditions. Here we present the main results from the SPIS simulations: the surface potential of the spacecraft; the potentials at the locations of the particle and field instrumentation such as the RPWI Langmuir probes and the PEP plasma analysers; the electron and ion density at the locations of the RPWI instruments and the PEP plasma analysers; the characteristics of perturbing particle populations such as photoelectron and secondary electron populations produced by the spacecraft itself; and the properties of the ion wake of the spacecraft. The detailed knowledge of the listed parameters will be used to provide accurate analyses of the first in-situ particle and field measurements performed by JUICE.

How to cite: Holmberg, M. K. G., Jackman, C., Taylor, M. G. G. T., Witasse, O., Wahlund, J.-E., Barabash, S., Altobelli, N., Cipriani, F., Déprez, G., and Huybrighs, H. L. F.: Surface charging of JUICE in the solar wind, Europlanet Science Congress 2022, Granada, Spain, 18–23 Sep 2022, EPSC2022-603, https://doi.org/10.5194/epsc2022-603, 2022.

16:30–16:45
|
EPSC2022-633
Yoshifumi Futaana, Manabu Shimoyama, Martin Wieser, Stefan Karlsson, Herman Andersson, Hans Nilsson, Xiao-Dong Wang, Andrey Fedorov, Nicolas Andre, Mats Holmstrom, and Stas Barabash

A Micro-Channel Plate (MCP) is a widely used component for counting particles in space. Using the background counts of MCPs on Mars Express and Venus Express orbiters operated over 17 years and 8 years, respectively, we investigate the galactic cosmic ray (GCR) characteristics in the inner solar system. The MCP background counts at Mars and Venus on a solar cycle time scale exhibit clear anti-correlation to the sunspot number. We conclude that the measured MCP background contain the GCR information. The GCR characteristics measured using the MCP background at Mars show features that are consistent with the ground-based measurement in solar cycle 24. The time lag between the sunspot number and the MCP background at Mars is found ~9 months. The shorter-term background data recorded along the orbits (with a time scale of several hours) also show evident depletion of the background counts due to the absorption of the GCR particles by the planets. Thanks to the visible planetary size change along an orbit, the GCR contribution to the MCP background can be separated from the internal contribution due to the β-decay. Our statistical analysis of the GCR absorption signatures at Mars implies that the effective absorption size of Mars for the GCR particles have a >100 km larger radius than the solid Martian body.

How to cite: Futaana, Y., Shimoyama, M., Wieser, M., Karlsson, S., Andersson, H., Nilsson, H., Wang, X.-D., Fedorov, A., Andre, N., Holmstrom, M., and Barabash, S.: Galactic Cosmic Rays at Mars and Venus: Temporal Variations from Hours to Decades Measured as the Background Signal of Onboard Micro-Channel Plates, Europlanet Science Congress 2022, Granada, Spain, 18–23 Sep 2022, EPSC2022-633, https://doi.org/10.5194/epsc2022-633, 2022.

16:45–17:00
|
EPSC2022-723
Liam Morrissey, Micah Schaible, Orenthal Tucker, Paul Szabo, Giovanni Bacon, Rosemary Killen, and Daniel Savin

Introduction:  Surface sputtering by solar wind (SW) ion irradiation is an important process for understanding the surface and exosphere of airless celestial bodies such as the Moon, Mercury, and asteroids. In addition to SW ion induced sputtering, processes such as photon and electron stimulated desorption and impact vaporization, can also contribute to the exosphere formation around airless bodies. A better understanding of relative contributions of these processes is needed to interpret ground-based and spacecraft observations of the exosphere. Our focus here is on SW ion induced sputtering. Laboratory simulations are both complex and expensive. Hence, theoretical sputtering models are used to study the incoming ions, impacted surface, and sputtered atoms. The most common sputtering models, such as TRIM and SDTrimSP, use the binary collision approximation (BCA) and predict the yield and energy distribution of sputtered atoms, along with the depth of deposition and damage, all as a function of the incoming ion type, impact energy, and impact angle.

 

Within SDTrimSP there are several inputs that have been applied differently in previous SW sputtering simulations1,2,3. These parameters can influence the simulated behavior of both the target and sputtered atoms. Laboratory data is often readily available for comparison with ion sputtering simulations from monatomic or simple oxide targets, and simulations can closely match experimental sputtering yields over a broad energy range. Comparatively, little work has been done to determine how the simulation parameters should be chosen for more complex targets relevant to planetary surface analogs. It is therefore of great interest to understand how sensitive sputtering behavior is to these inputs and what parameter choices best approximate SW sputtering. We have conducted a detailed sensitivity study into SDTrimSP parameters to produce a best-practice for simulating SW impacts onto the lunar surface. These results can be used to establish a more consistent methodology for simulations of SW induced sputtering.

Methods:  First, we consider the sensitivity of the SDTrimSP simulated SW sputtering behavior to several user input parameters. In all cases we simulated the effect of H or a combination of H and He onto an anorthite (CaAl2Si2O8) surface. Within SDTrimSP we considered the role of the O surface binding energy (SBE), ISBV (the method of dealing with SBEs for compounds), static vs. dynamic simulations, impact energy approximations, incidence energy approximations, and the elemental composition of the SW.  For all parameters we quantified their effect on the overall sputtering yield, elemental composition of the sputtering yield, elemental surface concentration, damage production, and energy distribution of sputtered atoms. Based on these sensitivity results we recommend a best-practice for simulating SW sputtering using SDTrimSP.

 

Results: The predicted sputtering behavior was shown to be highly dependent on several of the SDTrimSP parameters considered. For example, previous SW simulation studies have used O SBEs between 1 and 6.5 eV, based on recommended values, fitting to experiment, and monomatomic sublimation energies. For all cases considered, the O SBE had a significant affect on the overall and elemental yield. Furthermore, dynamic simulations, which allow for the surface to change as a function of fluence, better represent the surface evolution during SW impacts. The effect of the O SBE can also be seen in the surface composition as a function of fluence (Fig 1). For an O SBE of 1 eV, strong preferential sputtering of O is observed, and the surface composition fraction is reduced from  0.6 to 0.3 at a fluence of 200 x 1016 atoms/cm2. In contrast, there is almost no reduction in O surface composition for an SBE of 6.5 eV. This large depletion in surface O at an SBE of 1 eV has not been observed in previous irradiation experiments of silicates4,5,6. Therefore, O SBEs of 1 eV are likely not representative of what would be seen for materials relevant to planetary science.

 

Varying the ion  incidence angle  also significantly affected the sputtering behavior. Impacts normal to the surface are often used to simulate a flat surface and can more easily be compared to experimental data. However, the surface of the Moon and Mercury consists largely of approximately spherical weathered grains. As a result, incoming SW ions are impacting the surface at many different relative angles. When oblique incidence angles are simulated the elemental and overall yields increase in all cases. For both cases there was also an increase in the peak of the damage distribution along with a reduction in depth at this peak.

 

Accounting for the He component in the SW leads to a 20% increase the elemental sputtering yields and and a 20% increase in the damage produced within the substrate (Fig 2). Therefore, while He makes up only 4% of the SW it accounts for over 20% of the sputtering behavior. When comparing the H and H + He options the proportion of O in the yield stays consistent. This suggests that a factor could be used to account for the He contributions.

 

In summary, while SDTrimSP represents a valuable tool to better understand the effect, the results are highly dependent on many user-specific parameters. This study directly quantifies these sensitivities on the SW-induced sputtering behavior and concludes with the following best-practice recommendation for SDTrimSP simulations of SW sputtering:

  • 1 keV/amu impacts (96% H, 4% He) to approximate SW composition
  • Dynamic simulations to allow for the behavior to evolve as a function of fluence
  • Cosine distribution of impact angles onto the surface to approximate spherical grains
  • Incorporation of mineral specific SBEs where possible

References:

1. Mutzke, A., et al. (2019) “IPP-report 2019-02”

2. Szabo, P. S., et al. (2018) doi: 10.1016/j.icarus.2018.05.028

3. Schaible, M. J., et al. (2017) doi: 10.1002/2017JE005359

4. Dukes, C.A., et al. (1999) doi: 10.1029/98JE02820

5. Dukes, C.A., et al. (2015) doi: 10.1016/j.icarus.2014.11.032

6. Laczniak, D.L., et al. (2021) doi: 10.1016/j.icarus.2021.114479

Fig 1. Surface composition as a function of fluence for and O SBE of 1 eV (A) and 6.5 eV (B)

 

Fig 2. Count of vacancies as a function of depth for different SW compositions using a cosine distribution of the impact flux vs impact angle

How to cite: Morrissey, L., Schaible, M., Tucker, O., Szabo, P., Bacon, G., Killen, R., and Savin, D.: Establishing a Best-Practice for SDTrimSP Simulations of Solar Wind Ion Induced Sputtering, Europlanet Science Congress 2022, Granada, Spain, 18–23 Sep 2022, EPSC2022-723, https://doi.org/10.5194/epsc2022-723, 2022.

L1.119
|
EPSC2022-774
|
ECP
Noor Masdiana Md Said, Guifré Molera Calvés, Pradyumna Kummamuru, Jasper Edwards, and Giuseppe Cimo'

We present an overview of the University of Tasmania’s (UTAS) progress in monitoring and providing ground support for space projects. With five radio telescopes distributed across Australia, UTAS has a good capacity to study a wide range of scientific phenomena in our Solar System and to improve the outcome of space missions. High-cadence Mars Express spacecraft observations in the X-band (8.4 GHz) were monitored between 2014 and 2022 using the European Very Long Baseline Interferometry (VLBI) network and UTAS radio telescopes to study interplanetary plasma scintillation and characterise solar wind parameters. The quantification of the plasma’s effect on the radio signal helps in phase referencing for ultra-precise spacecraft tracking. The international collaboration with the China National Space Administration (CNSA) also allowed simultaneous coherent tracking of the interplanetary plasma scintillation for the incoming radio signals of the Mars Express and Tianwen-1 spacecraft.

Space weather monitoring has been carried out to study events such as coronal mass ejections using radio signals transmitted by the Solar Orbiter and Solar Heliospheric Observatory (SOHO) spacecraft. The unique radio telescope infrastructure at UTAS will be essential in providing ground support to the Planetary Radio Interferometry and Doppler Experiment (PRIDE) led by the Joint Institute for VLBI ERIC (JIVE). The PRIDE experiment has been chosen by the European Space Agency (ESA) for the JUpiter ICy Moons Explorer mission (JUICE) that will explore three of Jupiter’s moons: Europa, Ganymede, and Callisto. This space mission is scheduled to launch in April 2023.

In addition, University of Tasmania has been conducting observations with NASA and JPL for bi-static radar tracking experiments to detect and monitor Near-Earth Asteroids. Over 14 observations have been conducting with UTAS radio telescopes since the beginning of 2021.

 

 

How to cite: Md Said, N. M., Molera Calvés, G., Kummamuru, P., Edwards, J., and Cimo', G.: Space science advancements at the University of Tasmania, Europlanet Science Congress 2022, Granada, Spain, 18–23 Sep 2022, EPSC2022-774, https://doi.org/10.5194/epsc2022-774, 2022.

MITM7 | Small sensors, instruments and payloads for planetary exploration

13:10–13:20
|
EPSC2022-684
|
ECP
Jorge Hernández Bernal, Alejandro Cardesín Moinelo, Ricardo Hueso Alonso, Eleni Ravanis, Abel Burgos Sierra, Simon Wood, Julia Marín Yaseli de la Parra, Donald Merrit, Marc costa Sitja, Alfredo Escalante, Emmanuel Grotheer, Pilar Esquej, Miguel Dias Almeida, Patrick Martin, Dima Titov, Colin Wilson, Teresa del Río Gaztelurrutia, Agustín Sánchez Lavega, and Mar Sierra

The Visual Monitoring Camera (VMC) is a small camera onboard Mars Express, initially intended to provide visual confirmation of the separation of the Beagle 2 lander. In 2007, a few years after the end of its original mission, VMC was turned on again to obtain full-disk images of Mars for outreach purposes (Ormston et al., 2011). As VMC obtained more images, the scientific capabilities of the camera became evident (Sánchez-Lavega et al., 2018), and finally the small camera was upgraded to be a new scientific instrument, with an agreement between the European Space Agency (ESA) and the University of the Basque Country (Spain; UPV/EHU). In this work we describe the calibration and technical efforts that are allowing us to maximize the scientific output from this small camera.

Figure 1. Image of VMC before launch (left) and scheme from the Flight User Manual (right)

 

VMC is also called the Mars webcam, as it is similar to a typical webcam of the 2000s. The sensor has a a 640x480 pixel array, and a Field of View (FOV) of 30ºx40º. This wide FOV, together with the elliptical orbit of Mars Express, enables full-disk observations from apocenters, which are the most common product of VMC. It is also possible to use this wide FOV to image large sections of the limb, and therefore monitor the occurrence of high altitude aerosols, as shown by Sánchez-Lavega et al. (2018).

Figure 2. Full disk of Mars as seen by VMC.

 

Operations

Since 2018 VMC operations follow a similar routine as those used for other science instruments. The Science Ground Segment takes care of the Medium Term Planning (MTP) following the inputs from the science team. The science team performs the Short Term Planning (STP). Fig. 3 shows a typical VMC observation, which consists of a default image, followed by one to several loops of 6 images that use a set of predefined exposures. The exposure times are set to maximize the dynamic range of the final science products obtained by combining the individual images.

Figure 3. Scheme of a typical VMC observation.

 

Calibration of images

The images are calibrated following the standard scheme of subtracting a dark current and dividing by a flatfield image. The flat field correction is much more relevant than the dark correction in the quality of the final images after calibration. No onground calibration is known for VMC, therefore the dark current and flat-field corrections used are based only on in-flight observations. The dark was obtained by pointing VMC to the sky, specifically the area of Eridanus, where few bright stars are present.

The flat-field was created using dark-corrected images of flat portions of Mars that were well and uniformly illuminated, as free as possible from large structures, and as flat as possible.

Calibrated images are routinely archived at ESA’s Planetary Science Archive (PSA), as described by Ravanis et al. (2020)

Figure 4. VMC dark (left) and flat (right).

 

Geometry

The original documents indicate the design parameters for the orientation of VMC in the reference frame of MEX, and for the pixel resolution (iFOV). However, the accurate parameters once VMC was mounted on MEX were never measured on the ground. In addition to this, we find that the timestamp of images suffers a random shift of a few seconds. As a result, we have 5 free parameters: 3 Euler angles for the attitude relative to the MEX reference frame; the pixel resolution (iFOV); and the shift in time from the actual timestamp to the labeled timestamp.

In order to determine the attitude and iFOV of VMC relative to Mars Express, we used images showing stars. Many of these observations covered the stars of the constellation of Orion, because several suitable stars are present in that region of the sky. During these observations the spacecraft maintains a fixed attitude, therefore, the time related uncertainty is not present and only 4 free parameters remain: 3 Euler angles, and the pixel size. These parameters are shown in table 1.

Table 1. VMC geometric parameters as given by the Flight User Manual (FUM) and calibrated values.

The shift in time was estimated from observations showing Phobos. The relative speed of Phobos as seen from Mars Express is high, and therefore it is possible to use its position as an accurate clock. We find that our images are usually obtained between 6 and 13 seconds before the labeled time, but we find random variations. Subtracting 10 seconds is considered a good strategy in most cases, but this uncertainty remains as a limitation.

Figure 5. VMC image showing the stars of Orion (left), and Phobos in front of Mars (right). Red circles represent the expected position before calibration. Green circles are the expected positions according to the new calibration.

 

Conclusions

Within the expectable limitations, the performance of this new instrument is very good and VMC is enabling novel science results and techniques (e.g. Hernández-Bernal et al. 2021). This is in part because VMC provides some capabilities that are not common among instruments in orbital planetary missions. Even with no on-ground calibration available, it has been possible to calibrate the camera, both photometrically and geometrically. Some hardware limitations remain, and others have been partially overcome with specially developed operational strategies.

 

References

Hernández‐Bernal et al. (2021). A Long‐Term Study of Mars Mesospheric Clouds Seen at Twilight Based on Mars Express VMC Images.

Ormston et al. (2011) An ordinary camera in an extraordinary location: Outreach with the Mars Webcam.

Ravanis et al. (2020). From engineering to science: Mars Express Visual Monitoring Camera's first science data release.

Sánchez-Lavega et al. (2018). Limb clouds and dust on Mars from images obtained by the Visual Monitoring Camera (VMC) onboard Mars Express.

How to cite: Hernández Bernal, J., Cardesín Moinelo, A., Hueso Alonso, R., Ravanis, E., Burgos Sierra, A., Wood, S., Marín Yaseli de la Parra, J., Merrit, D., costa Sitja, M., Escalante, A., Grotheer, E., Esquej, P., Dias Almeida, M., Martin, P., Titov, D., Wilson, C., del Río Gaztelurrutia, T., Sánchez Lavega, A., and Sierra, M.: The Visual Monitoring Camera on Mars Express: calibrating a new science instrument made from an old webcam orbiting Mars, Europlanet Science Congress 2022, Granada, Spain, 18–23 Sep 2022, EPSC2022-684, https://doi.org/10.5194/epsc2022-684, 2022.

L1.124
|
EPSC2022-788
Antti Penttilä, Mario F. Palos, Antti Näsilä, and Tomas Kohout

Introduction: The camera performance for space missions should be verified before flight. Exposure times with the expected fluxes should be planned, resulting signal-to-noise ratios (SNR) computed, and the overall image quality evaluated. This can be done in a specialized laboratory but having a quick simulation tool to help the design in early phase would be an asset.

We have developed a software based on Blender and Python post-processing for the abovementioned purpose. The software [1] is used with the ASPECT hyperspectral camera (Milani CubeSat, ESA’s Hera mission), the HyperScout hyperspectral camera (Hera mission), and the MIRMIS hyperspectral camera unit (ESA’s Comet Interceptor mission).

Modeling and rendering an asteroid or a comet nucleus: Blender is an open-source rendering software that is widely used in many fields [2]. Capabilities in modeling the 3D geometry and rendering the result makes it also suitable for simulating how an asteroid or a comet nucleus would appear when imaged.

For camera testing purposes, the geometry of the target does not need to be completely correct. It is sufficient that the overall size and shape matches the target, and the surface roughness and boulder distribution are representative. Blender has functions for introducing procedural geometric features randomly on the underlying shape, and we use this to introduce boulders of different sizes on the target. For the overall target shape, either low-resolution models derived from lightcurve or radar observations or high-resolution shape models from previous missions can be used, such as the models for Bennu, Ryugu, or 67P/Churyumov–Gerasi¬menko (see Fig. 1).

We have implemented some common photometric models for the surface material in Blender. Blender has some limitations when compared to other ray-tracers, namely it does not really support custom scattering laws to be implemented. The internal ray-tracing loop employs only Blender’s internal shaders, i.e., scattering laws for a surface element. In other words, one can implement any phase function depending only on the phase angle in Blender, but not disk function that would depend on the incident and scattering directions.

Fortunately, Blender’s internal shaders include Lommel-Seeliger (‘volume scatter’ in Blender) and Lambertian (‘diffuse BSDF’), and one can also mix these, which covers already the common disk functions for dark and bright surfaces quite well. For phase functions we have implemented the exponential-polynomial, linear-magnitude, and ROLO functions as shown in [3]. By combining the disk and the phase functions we can implement Lommel-Seeliger, ROLO, McEwen, and Lambert photometric functions for the target.

The Blender part of our software is outputting ‘ideal’ noiseless images with a given observing geometry, camera field-of-view, detector resolution, and surface albedo. Our post-processing step subsequently introduces the effects originating from the camera and the detector physical capabilities.

Camera performance simulation: The images can be converted to real physical units (I/F, Watts, photons, electron counts on CCD). While the RGB channel values in the Blender images have arbitrary units and scale, one can render a Lambertian disk at backscattering with the same illumination intensity and target-camera distance as in the actual object image. This calibration procedure will give us I/F conversion from the RGB values. Considering the target’s distance to the Sun we can further convert these into radiant flux in Watts.

If we are dealing with a spectral instrument, we need to have a spectral image/datacube. Currently we are not changing the parameters of the photometric function with the wavelength. This implies that the received flux is only linearly dependent on the wavelength-dependent albedo of the target, and that we can just multiply one rendered image with the normalized spectra of the target’s surface material for a spectral datacube.

With spectral flux for each image pixel, we can apply the transmission of the camera optics and the spectral filter (i.e., the Fabry-Perót interferometer in ASPECT and MIRMIS cameras). Watts can be converted into photon counts for each wavelength, and finally the detector quantum efficiency curve can be used to achieve electron elementary charges at the detector.

Once the electron charges per time unit on the detector has been solved, we can introduce a reasonable dark field pattern, dark current noise (Poisson), readout noise (Gaussian), and photon shot noise (Poisson) for a given exposure time. This will give us the final, simulated camera image or a hyperspectral datacube of the target, together with the SNR estimate.

Discussion: The SSO object simulated imaging and camera performance tool can be used to produce expected camera data, with realistic noise, for space mission and instrument design. Especially with (hyper)spectral cameras this tool can be used to verify how different spectral and/or spatial details could be resolved with certain exposures, noise levels, and optics/camera transmissions.

We have started with application to atmosphereless, relatively homogeneous targets such as an asteroid or a comet nucleus. Variability to surface properties (local albedo or color, for example) can be introduced using Blender’s procedural modeling tools. Simple atmospheres and comet gas/dust environments could be added in the future. To some extent, this is what is done in the SISPO project [4]. We verify our results against the NASA Planetary Spectrum Generator [5]. For visualizing views to an asteroid or a comet with a given spacecraft flight path, possibly given with a SPICE kernel, we acknowledge the shapeViewer [6] tool.

Figure: Blender-visualization of the high-resolution shape model of asteroid Ryugu with added boulders on the surface.

References: [1] Git project for the Blender/Python imaging simulations. https://bitbucket.org/planetarysystemresearch/workspace/projects/SSO_PHOTOMETRY.  [2] Blender software, https://www.blender.org/.  [3] Golish D. R. et al. (2021) Icarus, 357, 113724.  [4] Pajusalu M. et al. (2021) arXiv, astro-ph.IM, 2105.06771.  [5] NASA Planetary Spectrum Generator, https://psg.gsfc.nasa.gov/  [6] Vincent J.-B. (2014) ACM conference, Helsinki.

How to cite: Penttilä, A., Palos, M. F., Näsilä, A., and Kohout, T.: Blender modeling and simulation testbed for solar system object imaging and camera performance, Europlanet Science Congress 2022, Granada, Spain, 18–23 Sep 2022, EPSC2022-788, https://doi.org/10.5194/epsc2022-788, 2022.

13:00–13:10
|
EPSC2022-820
Maria Hieta, Maria Genzer, Harri Haukka, Antti Kestilä, Ignacio Arruego Rodríguez, Victor Apéstigue Palacio, Manuel Reina Aranda, Alejandro Gonzalo Melchor, Javier Martínez Oter, Miguel González-Guerrero Bartolomé, Cristina Ortega, Carmen Camañes, Manuel Dominguez-Pumar, Servando Espejo Meana, Hector Guerrero, and José Antonio Rodríguez-Manfredi

Introduction:

MiniPINS is an ESA study to develop and prototype miniaturised surface sensor packages (SSPs) for Mars and the Moon. The study aims at miniaturising the scientific sensors and subsystems, as well as identifying and utilizing commonalities between Mars and Moon SSPs, allowing to optimise the design, cut costs and reduce the development time.

Mars In-Situ Sensors (MINS) is a penetrator with approx. 25 kg mass, piggy-backed by another Mars mission spacecraft to Mars. In total 4 identical penetrators are deployed to different landing sites either from the approach orbit or Mars orbit. The design of MINS has significant heritage from FMI’s MetNet mission design[1]. The entry, descent and landing sequence of MINS is completely autonomous and controlled by its on-board computer. In the Martian atmosphere the penetrators undergo aerodynamic braking with inflatable breaking units until they reach the target velocity of 60-80 m/s for entering the Martian surface. The nominal mission duration is one Martian year.

Lunar In-Situ Sensors (LINS) is a miniature 7 kg station deployed on the Moon surface by a rover. LINS mission consist of 4 surface stations deployed to different sites within the rover’s traveling perimeter. The LINS scientific package consists of several scientific instruments to study the Moon for 2 years. 

Mars SSP sensors:

MINS will study the Martian atmosphere, seismology and chemistry. The MINS payload consists of a camera, a visual spectrometer, a meteorological package, an impact accelerometer, soil thermoprobes, a chemistry probe, a seismometer and a radiation monitor. Many of the instruments have Mars heritage but additional qualification is required due to landing shock. 

The meteorological package consists of air temperature sensors, pressure sensor, relative humidity sensor, wins sensors, dust sensor and solar irradiance sensor. Pressure and humidity sensors are provided by FMI and the sensors have heritage from multiple Mars missions like the M2020 Perseverance rover[2]. Air temperature sensors are provided by CAB and they have heritage from MSL[3], InSight[4] and M2020[2]. Solar irradiance sensor (SIS)[5] is provided by INTA and the technology has been used in several Mars missions[6]. The selected design for MiniPINS is the SIS for ExoMars ‘22. Also based on ExoMars ‘22 METEO is the dust sensor by UC3M. 

The chemistry probe is a new design developed by CAB. It is composed of several miniature sensing needles that share an acquisition electronics to measure pH, salinity, water content, conductivity and temperature of the Martian regolith. The current TRL is 6. The thermoprobe is also a new design developed by UPC for characterizing the thermophysical properties of the regolith.

The visual spectrometer selected for MiniPINS is based on tunable Fabry-Pérot interferometer (FPI) technology by VTT Technical Research Centre of Finland[7]. The piezo-actuated FPI technology has previously flown on board nanosatellites Aalto-1, Reaktor Hello World and PICASSO demonstrating operation in different wave lengths. Due to its maturity and flight-proven performance, the near-IR concept is the baseline for the MINS spectrometer.

Moon SSP sensors:

LINS proposal is focused on two principal science objectives: understanding the structure and composition of the lunar interior and the characterization of the lunar surface environment in view of human exploration and resource extraction. The placement of a network of short period seismic stations will allow determining the thickness of the lunar crust (upper and lower) and its lateral variability. Due to smaller size the LINS has fever scientific sensors and many are common with the MINS packages. Magnetometer selected for LINS is based on the triaxial magnetometer developed by INTA for MetNet Mars mission. The sensor will require some modifications and adaptation of the ejection mechanism as well as temperature qualification for Lunar conditions.

Shared sensors:

The cameras of both MINS and LINS are based on the Athermalized Panchromatic Imaging System (APIS) low-resolution refractive camera used by INTA as a CubeSat payload which flew on-board the OPTOS satellite. It is based on a 1.3 MP CMOS image sensor from Cypress Semiconductor Corporation but the optics will be redesigned taking into account the applicable requirements for each mission

Miniature wind sensors (Mars) and thermoprobes are based on the same sensor structure developed by UPC. The new type of sensor is a spherical shell divided into four sectors. To sense temperature and provide heating power, a customized 3 x 3 mm silicon die, including a platinum resistor, is attached to the inner side of each sector. In MINS the wind sensors are located in the deployable mast and the soil sensor is in a compartment below the surface in contact with the regolith. For LINS a dedicated deployment mechanism must be developed for the soil probe. The wind sensors and soil probes are currently in TRL 6.

The short period seismometer is based on a miniature MEMS resonator by Imperial College, previously used in InSight[8]. For LINS a variant of the sensor, called the Silicon Seismic Package, (SSP)[9] is proposed.

The impact accelerometer of MINS will be a new development. To miniaturise the accelerometer, a commercial part from PCB Piezotronics has been selected as the basis of the sensor and the complete sensor assembly will be developed and qualified by INTA. Lunar SSP also includes an accelerometer which is used to determine the attitude of LINS. It is based on an Analog Devices component ADXL327BCPZ, already qualified by INTA for Mars, but LINS missions requires even larger temperature range so additional qualification is foreseen.

The radiation monitors included in both missions are based in the Metal-Oxide-Semiconductor Field-Effect-Transistor (MOSFET) dosimeters. Proposed provider of MOSFET dosimeters is Tyndall National Institute.

Project status:

The MiniPINS study, consisting of project phases A and B1, is nearly completed and a final review was held in autumn 2021. As a follow-up, the European Space Agency is facilitating an industrial development of European inflatable deceleration system.

How to cite: Hieta, M., Genzer, M., Haukka, H., Kestilä, A., Arruego Rodríguez, I., Apéstigue Palacio, V., Reina Aranda, M., Gonzalo Melchor, A., Martínez Oter, J., González-Guerrero Bartolomé, M., Ortega, C., Camañes, C., Dominguez-Pumar, M., Espejo Meana, S., Guerrero, H., and Rodríguez-Manfredi, J. A.: State-of-the-art miniaturised science instruments of the MiniPINS landers, Europlanet Science Congress 2022, Granada, Spain, 18–23 Sep 2022, EPSC2022-820, https://doi.org/10.5194/epsc2022-820, 2022.

L1.126
|
EPSC2022-864
|
ECP
José Luis Mesa Uña, Marina Díaz Michelena, and Claudio Aroca Hernández-Ros
  • Introduction

In this work, we present the calibration of the NEWTON magnetic susceptometer for in-situ determination of the magnetic susceptibility of planetary surface rocks and regoliths. The susceptometer is based on inductive methods, and its operation does not require of sample preparation or manipulation. Current prototype has demonstrated capabilities for the determination of the complex magnetic susceptibility, i.e. real and imaginary component of the susceptibility [1, 2]. We propose the NEWTON susceptometer for the determination of the complex magnetic susceptibility, to provide valuable information about the regolith and surface rocks in rocky bodies of the solar system, to be used as a selection criterion of rocks for sample return missions or for the in-situ scientific studies of the magnetic properties during planetary missions.

 

  • Calibration of the susceptometer

Due to the design of the instrument and the nature of the available magnetic susceptibility patterns [3], there are not available susceptibility calibration samples traceable to primary patterns with characteristics compatible with this device. The calibration procedure comprises a comparative methodology, consisting in two steps: the manufacture of magnetic susceptibility patterns, to serve as calibration samples of the real and imaginary parts separately for the NEWTON susceptometer; and the comparison of the results from the prototype with those from reference equipment.

 

The manufactured samples for the calibration of the real component of the magnetic susceptibility were made of ferrite powder diluted in a non-magnetic epoxy resin. Four samples of different mass content in ferrite powder were made, with the following distribution: a sample with 10% (weight %), a sample with 1%, a sample with 0,1% and a sample with 0,03% in ferrite powder. The homogeneity of the distribution of the ferrite powder within the samples was verified with X-ray images.

 

The imaginary susceptibility calibration samples were constructed using different techniques and comparing the results with other reference equipment.  The sample used for calibration is made of 2.5mm diameter steel spheres (rolling bearing balls) distributed in a cubic lattice in a resin matrix providing both isotropic real and imaginary magnetic susceptibility values.

 

  • Environmental testing

The most critical parts of the instrument have been submitted to qualification tests: vibration, thermal-vacuum and outgassing tests, applying the same requirements and test levels of those for the landing Mars mission, Exomars 2022, to demonstrate the capability of the instrument to withstand the interplanetary missions and space conditions.

 

  • Application of the NEWTON susceptometer

The characterization of the complex magnetic susceptibility of rocks is an unexplored tool to constrain the composition, structure and geological history of rocks in surface planetary exploration [4]. The instrument is designed to measure a dynamic range of the real susceptibility from χ’ = 10-4 S.I. to χ’ = 101 S.I. for the real susceptibility, representative values for the rocks of the Earth, Moon and Mars [5, 6, 7]. The imaginary susceptibility measurement procedure has a resolution in the order of χ” = 10-6

The sensor is suitable to be placed on board rovers, or to be used as a portable device during field campaigns and by astronauts in manned space missions. This sensor provides a great advantage compared to available commercial susceptometers, given that it does not require sample preparation, but only a minimum sample size (~50 x 20 x 20 mm). The current state of the susceptometer prototype consist of a portable device divided in two boxes: the Sensor Box (SB), containing the sensor core; and the Electronics Box (EV) containing the support electronics for the operation of the instrument (Figure 1).

The application of susceptibility measurements during space missions have a potential impact in the surface regolith and rocks characterization. The analysis of the samples from the Apollo missions [4], the characteristics of the Martian magnetic field [5], works in stony meteorites [6], Earth impact areas [7] and Earth analogues [8] highlight the enhancement of the scientific research that in situ magnetic field and magnetic susceptibility measurements provide to the Lunar and Martian exploration.

Figure 1. Image of the setup of the NEWTON instrument for in situ measurements during field campaigns, including reference samples for calibration.

Acknowledgement

This work has been funded by the Spanish Programme for Research, Development and Innovation under the grants of references ESP2017-88930-R and PID2020-119208RB-I00: MagAres and MINOTAUR, respectively, as well as the European Union Project NEWTON, of grant agreement 730041.

 

References

[1] J.L. Mesa et al. Feb. 2022. Submitted to IEEE Trans Instrum Meas.

[2] M. Díaz Michelena et al. 2017, Sensor Actuat A-Phys, vol. 263, pp. 471-479

[3] https://www.nist.gov/mml/materials-science-and-engineering-division/magnetic-moment-and-susceptibility-standard-reference. NIST. Retrieved May 4, 2022.

[4] M.S. Bentley et al. 2009, Planet  Space Sci, vol. 57 (12), pp. 1491-1499.

[5] P. Rochette et al. 2006, Astrobiology, vol 6(3), pp. 423-36.

[6] P. Rochette 2010, Earth Planet. Sci. Lett., vol. 292, pp. 383–391.

[7] A. Collareta 2016,  Meteorit Planet Sci, vol. 51 (2), pp. 351–371 

[8] J. Pati,  etl al 2016, Curr Sci India, vol. 111 (3), pp. 535-542.

 

How to cite: Mesa Uña, J. L., Díaz Michelena, M., and Aroca Hernández-Ros, C.: Calibration of NEWTON Susceptometer for fast and in-situ determination of the complex magnetic susceptibility., Europlanet Science Congress 2022, Granada, Spain, 18–23 Sep 2022, EPSC2022-864, https://doi.org/10.5194/epsc2022-864, 2022.

12:50–13:00
|
EPSC2022-1163
|
ECP
Stefano Ferretti, Vincenzo Della Corte, Alice Maria Piccirillo, Hanna Rothkaehl, Matthew Sylvest, Manish Patel, Hanno Ertel, Mark Millinger, Ivano Bertini, Stefano Fiscale, Andrea Longobardo, Laura Inno, Alessandra Rotundi, Eleonora Ammannito, and Giuseppe Sindoni

Introduction: The dust ejected by cometary nuclei encodes valuable information on the formation and evolution of the early Solar System. Several short-period comets have already been studied in situ[1], but their pristine condition was modified by multiple perihelion passages. Dynamically new comets (DNCs) remain pristine bodies since they never visited the inner Solar System, stationing more than 2000A.U. far away from the Sun in the Oort cloud.

Comet Interceptor (CI) is the first F-class space mission selected by the European Space Agency to study a DNC or an interstellar object entering the inner Solar System for the first time[2]. The Dust Impact Sensor and Counter (DISC) is an instrument included in the Dust Field and Plasma (DFP) suite, part of the CI payload, dedicated to characterizing the dust encountered by the spacecraft (S/C) during its flyby in the coma of the target DNC. DISC will measure hypervelocity impacts (HVIs), in the range 10–70km/s, with cometary dust particles of 1–400μm diameter. It aims to characterize the mass distribution of dust particles in the range 10-15–10-8kg, and retrieve information on dust structural properties from impacts duration[3].

DISC design: DISC is a 121×115.5×46mm3 aluminum box containing both the detection system and the electronics (Fig.1). The former consists in a 100×100×0.5mm3 aluminum plate with three piezoelectric traducers (PZTs) at its corners. HVIs induce shockwaves in the sensing plate. Far from the impacted area, such waves become acoustic Lamb waves that propagate up to the PZTs, which start to vibrate at their resonant frequency. A couple of electronic boards at the bottom of the unit allows to retrieve the particles momentum and kinetic energy from PZTs vibration signal.

Fig.1: DISC sensing element and dust shield design.

DISC detection system is derived from the GIADA Impact Sensor measurement subsystem, that was designed to measure impacts of slow particles[4]. During CI flyby, some hypervelocity dust particles might perforate DISC outer sensing diaphragm and represent a serious hazard for the instrumentation. A dedicated mechanical element preliminarily designed as made of four 1cm-thick aerogel blocks and a 1mm-thick aluminum frame was integrated into DISC design to shield the entire S/C from such dangerous impacts.

Two key aspects need to be verified to ensure that the instrument is suitable for CI aims:

  • DISC capability to survive the expected coma dust environment;
  • DISC capability to measure the momentum/energy of impacting particles in the aforementioned size and mass ranges.

Dust shield assessment: We verified DISC dust shield performance using a two-stage Light-Gas Gun (LGG) (Open University, Milton Keynes) to shoot mm-sized particles of various materials at speeds around 5km/s[5,6]. This facility allowed to test the instrument resistance to momenta in the range 10-2–10-1kg·m/s and to energies of the order of 102J. The dust shield showed good resistance up to energies of about 200J, released by a 3mm nylon bead at 5.5km/s. DISC resistance to higher-energy particles can be improved by increasing the aerogel thickness, without any further modifications to the general design.

These experiments proved that DISC is compatible with the foreseen coma dust environment. Integrating a thicker aerogel layer in the design will reduce the risk of failure due to higher-energy particles to low enough values even for the S/C more exposed to the dust flux. The S/C beneath DISC unit is further protected by DISC lower layers.

DISC performance: DISC will measure momenta in the range 10-11–10-3kg·m/s[7]. The LGG facility allows to reach high momentum values by shooting heavy particles, but their collision dynamics is very different from what expected for cometary dust. A different strategy to simulate the foreseen impact momentum range is needed.

A Van der Graaf (VdG) gun can shoot μm-sized dust particles up to 20km/s, reproducing momenta of 10-9–10-7kg·m/s[8].

The tested impact parameters range can be extended by simulating HVIs effects with a high-power pulsed laser beam. Laser intensity, beam dimension, and pulse duration can be regulated to respectively match impact pressure, section, and shock duration of the corresponding particle[9]. Laser intensities of 109–1010W/cm2 can generate surface pressures from kbar to Mbar, typical of cometary dust particles colliding at 3–6km/s. Using our Nd:YAG laser (λ=1064nm), which emits τ=6ns pulses with pulse energy of Epulse=1.2J, we can cover a momentum range of 10-10–10-5kg·m/s. Since laser simulated and VdG real impacts share part of the released momentum range, laser shots can be calibrated and their representativity verified with real collisions.

The energy range expected for dust impacts measured during CI flyby is 10-7–102J. Laser simulated impacts cannot reach the higher energy values. However, the energy/pulse duration range is pretty vast and with some attenuators and pulse reducers the central/left part of the parameters space (around mJ energy and ns pulse time) could be reasonably covered.

Fig.2. shows the optical setup: a polarizer attenuator splits the beam and allows to regulate its power; a couple of mirrors prevents backwards reflections to get to the laser output aperture; a beam expander enlarges the beam, which enters a vacuum chamber and is focused by a plano-convex lens on the DISC breadboard mounted on a 3-axis translational stage. The vacuum chamber is fundamental to prevent plasma generation in air around the focus.

Fig.2: Optical setup for high-power pulsed laser simulated HVIs.

By properly tuning the laser parameters, this strategy allows to achieve representative simulations of cometary dust HVIs. In addition to assess DISC performances, simulating the same impact many times provides large statistics to calibrate DISC detection system and momentum/kinetic energy retrieval methodology with great accuracy.

References: [1] Keller H. U. and Kührt E. (2020) Space Sci. Rev., 216(1), 1–26. [2] Snodgrass C. and Jones G. H. (2019) Nat. Commun., 10(1), 1–4. [3] Della Corte V. et al. (2021) LPSC LII, Abstract #2332. [4] Esposito F. et al. (2002) Adv. Space Res., 29(8), 1159–1163. [5] McDonnell J. A. M. (2006) Int. J. Impact Eng., 33(1–12), 410–418. [6] Hibbert R. et al. (2017) Procedia Eng., 204, 208–214. [7] Di Paolo F. et al. (2021) LPSC LII, Abstract #1238. [8] Friichtenicht J. F. (1962) Rev. Sci. Instrum., 33(2), 209–212. [9] Pirri A. N. (1977) Phys. Fluids, 20(2), 221–228.

How to cite: Ferretti, S., Della Corte, V., Piccirillo, A. M., Rothkaehl, H., Sylvest, M., Patel, M., Ertel, H., Millinger, M., Bertini, I., Fiscale, S., Longobardo, A., Inno, L., Rotundi, A., Ammannito, E., and Sindoni, G.: Analysis of dust shield and detection system response to hypervelocity impacts for Comet Interceptor Dust Impact Sensor and Counter, Europlanet Science Congress 2022, Granada, Spain, 18–23 Sep 2022, EPSC2022-1163, https://doi.org/10.5194/epsc2022-1163, 2022.

MITM8 | Synergistic exploitation of small body missions in the 2020s

17:30–17:45
|
EPSC2022-630
|
ECP
Luana Liberato, Paolo Tanga, David Mary, and Federica Spoto

(385186) 1994 AW1 was the first known asteroid with a satellite, discovered in 1994 using photometric lightcurve [1], the most successful technique used for this purpose. After that, more than 450 asteroids with satellites were discovered in the Solar System [2], almost 80% of them with orbits up to Jupiter, using many other observation techniques such as radar, and direct imaging from the ground and space. Recently in 2021, it was the first time that a stellar occultation provided the discovery of a companion asteroid by two independent events [3]. But still, a whole range of separation and size ratios is out of reach, where asteroids are too faint for high-resolution imaging, too far for radar, or do not provide a good signature in photometry. In that range, the use of highly accurate astrometry could be promising. In binary star research, companions are revealed by astrometry when the motion of a star around the common barycentre is measured (wobbling). The same approach becomes possible for asteroids, for the first time thanks to Gaia astrometry. As predicted way before the launch of the Gaia satellite[4], the high accuracy astrometric data could be used to find binary asteroids currently out of reach of detection. The Gaia mission provided to the scientific community astrometric solutions at an unprecedented precision [5]. Data Release 3 (DR3) provides new data for more than 150.000 asteroids, 10 times more than in Gaia DR2. Hence, using a large number of bodies in DR3 data with even better precision than in previous releases, we aim to search for astrometric asteroid binaries. Our approach starts by averaging the residuals to orbital fits over each transit in the focal plane. We select the asteroids with at least 10 values of residuals that are consecutive in time or anyway spanning a limited time range. This selection results in a sample of a bit more than 30000 objects. Then, using a Generalized Lomb-Scargle periodogram (see [6] and references therein), we run a period search on every sequence in order to find a signal that would represent the period and amplitude of the system's wobbling. The result is a map of the frequency power that indicates the goodness of data fitting. Since this technique always finds periodic fluctuations that could be spurious because of residual noise, we perform some statistical tests to determine the probability of fake detection and the relevance of the signal found. The first procedure is to run 10000 Monte Carlo simulations on white noise using the same time-sampling as the real data. The resulting p-value shows us how likely it is to obtain a peak as large as the largest peak found in the data if there was only noise in the data. The bodies that have a p-value smaller than 5% pass through the second calibration test. Again we perform 2000 MC simulations while adding white noise to the real data and checking how it affects the distribution of frequencies obtained from the GLS periodogram. If at least 10% of the distribution lies around the best frequency found for the real data, then we select this body. This procedure tells us the quality and confidence of the signal found, i.e., how easy it is to detect and how much we can trust that there is a signal in the data.  After the period search and statistical relevance tests, we obtain over 3300 candidates as possible binary asteroids. The last step is to check if the wobbling found is physically consistent. Hence we calculate the estimated range of density, separation and mass ratio for the binary candidates. We consider 7 g/cm3 as a maximum threshold for an acceptable maximum density.  In the end, we obtained almost 250 asteroid binary candidates that survived the 3-stage selection. We still can't guarantee that the periods found with such favourable conditions are caused by a companion satellite, but we show that there are some interesting pieces of evidence to support such a hypothesis. Further verification is required, both by statistical methods and observations, to validate our findings.

 

References

[1] Pravec, P. & Hahn, G. 1997, Icarus, 127, 431

[2] Johnston, Wm. Robert. "Asteroids with Satellites Database" May 16, 2022. Johnston's Archive

[3] Gault D., Nosworthy P., Nolthenius R., Bender K., Herald D., 2022, MPBu, 49, 3

[4] Tanga, P., Hestroffer, D., Delbò, M., et al. 2008, Planetary and Space Science, 56, 1812

[5] Gaia Collaboration, Spoto, F., Tanga, P., et al. 2018b, Astronomy and Astrophysics, 616, A13

[6] VanderPlas, J. 2018, ApJS, 236, 16

[7] Hestroffer, D., Dell’Oro, A., Cellino, A., & Tanga, P. 2010, in Lecture Notes in Physics, Berlin Springer Verlag, Vol. 790, 251–340

 

Acknowledgements

This work presents results from the European Space Agency (ESA) space mission Gaia. Gaia data are being processed by the Gaia Data Processing and Analysis Consortium (DPAC). Funding for the DPAC is provided by national institutions, in particular the institutions participating in the Gaia MultiLateral Agreement (MLA). The Gaia mission website is https://www.cosmos.esa.int/gaia. The Gaia archive website is https://archives.esac.esa.int/gaia.

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001, also by CAPES-PRINT Process 88887.570251/2020-00, by the French Programme National de Planetologie, and by the BQR program of Observatoire de la Côte d'Azur. 

How to cite: Liberato, L., Tanga, P., Mary, D., and Spoto, F.: Satellite Search in Gaia DR3 astrometry, Europlanet Science Congress 2022, Granada, Spain, 18–23 Sep 2022, EPSC2022-630, https://doi.org/10.5194/epsc2022-630, 2022.

MITM9 | Advances in Mass Spectrometry for Spaceflight Applications

15:45–16:00
|
EPSC2022-705
|
ECP
Kelly Miller, Greg Miller, Hunter Waite, Tim Brockwell, Kurt Franke, Paul Hoeper, Rebecca Perryman, Christopher Glein, and Jim Burch and the MASPEX science and engineering teams

The MAss Spectrometer for Planetary EXploration (MASPEX) instrument is a multi-bounce time-of-flight mass spectrometer designed for high mass resolution and sensitivity. MASPEX-Europa will launch as part of the Europa Clipper mission payload in October 2024 to characterize the composition of major, minor, and trace neutral gases in Europa’s exosphere and potential plumes. The instrument has been designed to optimize measurement of complex natural environments with:

  • Variable mass resolution to support compositional reconnaissance with simultaneous measurement of ions from 2 u to 500 u at separation of unit masses, as well as focused analysis with mass resolution capable of separating CHN- and CHO-bearing organics over a more narrow mass range
  • Nearly 100% duty cycle via storage of ions in the source between extraction pulses
  • Exact mass identification via measurement in flight of the FC-43 calibrant gas
  • Measurement of trace compounds via enhancement of abundance with the cryocooler
  • Automated switching triggered in flight between “regular” and “ice grain” measurement parameters for optimization of data collection

These adaptations make MASPEX especially well-suited for data collection in a dynamic environment where measurement speed is important. The capability to provide both general and highly specific data on the composition of volatile and organic mixtures makes MASPEX very powerful to quantify habitability via geochemical indicators, and to search for the first, perhaps tentative signs of life beyond Earth via measurements of agnostic biosignatures such as isotopic ratios.

In this presentation, we will provide results from the final calibration and performance characterization of the MASPEX-Europa flight model instrument completed in summer 2022. We will also present the science that will be enabled for Europa Clipper, and how new scientific and technical innovations will allow MASPEX to open more windows into planetary evolution, cosmochemistry, and astrobiology for future missions.

How to cite: Miller, K., Miller, G., Waite, H., Brockwell, T., Franke, K., Hoeper, P., Perryman, R., Glein, C., and Burch, J. and the MASPEX science and engineering teams: Onwards to Europa: Results from the final ground calibration of the MASPEX-Europa flight instrument, Europlanet Science Congress 2022, Granada, Spain, 18–23 Sep 2022, EPSC2022-705, https://doi.org/10.5194/epsc2022-705, 2022.

15:30–15:45
|
EPSC2022-1075
|
ECP
Adeline Garcia, Cornélia Meinert, Pauline Poinot, and Gregoire Danger

Introduction

The organic molecular diversity present in extraterrestrial bodies such as asteroids and comets is of great interest for understanding the origin of life. However, the onboard analytical techniques are essentially low resolution mass spectrometry which, in view of the molecular diversity, quickly present limits both in the identification of compounds and in the comprehensive understanding of the composition of this type of sample. It is therefore interesting to question the interest to develop high resolution mass spectrometry for future space missions. In this context, the cosmorbitrap consortium is developing the spatialization of the Orbitrap. In addition, to optimize the identification of compounds within the samples to be analyzed, the coupling of such a technology to a gas chromatograph would also provide a gain in resolution and thus improve the characterization of the targeted samples.

In this perspective, a first development was carried out for a targeted analysis focusing on the detection of amino acids within analogues of soluble organic matter of meteorites [1] [2]. These molecules are particularly interesting because they have been detected in some meteorites and can be markers of the chemical evolution of the studied object [3]. Moreover, they could have played an important role in the homochirality observed on Earth [4]. In a second step, the same samples were analyzed by pyrolysis and thermal desorption, two sampling techniques usually used for in situ GC-MS analyses.

Materials and methods

Samples were analyzed on a GC-FT-Orbitrap-MS (Trace 1310 gas chromatograph with a Q-Exactive OrbitrapTM MS analyzer from Thermo Fisher Scientific).

Targeted amino acid analyses were performed on a chiral column: Chirasil-L-Val (Agilent). Pyrolysis and thermodesorption were performed on an RXi-5MS column (Restek). Evolved gas analyses (EGA) required the use of an inert column with an isothermal oven temperature.

For the analysis of the amino acid solution within the soluble organic meteorite analogues in GC-Orbitrap, a preliminary derivatization step was performed according to the method of Meinert and Meierhenrich [5].

The analogues were formed using the MICMOC device as described [6]. 

Preliminary results and conclusions

The optimization of the parameters and the realization of the calibration provide values of limit of detection and quantification as well as the sensitivity. A sensitivity in the order of 10-6 M is obtained .

Once optimized, the analysis of the amino acids within the analogues allows to observe about ten amino acids in full scan (see Fig. 1). By mass extractions about fifteen amino acids are identified. The use of GC-orbitrap for the targeted analysis of amino acids presents performances equivalent to those observed by GCxCG-TOFMS on the same samples, with higher detection and quantification limits.

Fig. 1. Full scan GC-orbitrap chromatogram of a derivatized residue for amino acids detection. Aminoacids are numbered as following : 1, Sarcosine; 2, D-Alanine; 3 : L-Alanine; 4, Glycine; 5, β-Alanine; 6, Methionine; 7, 2,3-DAPA.

In a second step, an EGA analysis of the same analogue was performed by thermodesorption (Fig. 2). The direct injection allows the rapid identification of molecules such as hexamethyletetramine (HMT) thanks to the high resolution of the mass spectrometer allowing to obtain the raw formula. Moreover, due to the possibility of obtaining these raw formulas a polymer of CHN composition is observed. To confirm these first results, an analysis via GC of the same sample allowed to confirm these first observations.

 

Fig. 2. EGA analysis of the non-derivatized residue. A) Chromatogram of the thermodesorption analysis. B) HMT derivatives. C) Mass spectrum of a CHN polymer.

These first data show that very high resolution mass spectrometry is an essential tool for the characterization of samples with a large molecular diversity. Coupled or not with a gas chromatograph, it allows to obtain raw formulas improving the identification of compounds in targeted analysis, and allowing to obtain information on the molecular content of a sample in direct analysis. Very high resolution mass spectrometry coupled or not to a GC is thus a promising technology for the future in situ analysis of interplanetary objects such as asteroids and comets.

 

Reference

[1] Muñoz Caro, G., Meierhenrich, U., Schutte, W. et al. Amino acids from ultraviolet irradiation of interstellar ice analogues. Nature, 2002, 416, 403–406

[2] G. Danger, F.-R. Orthous-Daunay, P. de Marcellus, P. Modica, V. Vuitton, F. Duvernay, L. Flandinet, L. Le Sergeant d’Hendecourt, R. Thissen, T. Chiavassa, Characterization of laboratory analogs of interstellar/cometary organic residues using very high resolution mass spectrometry, Geochimica et Cosmochimica Acta, 2013, Volume 118, 184-201

[3] Martins, Z., Modica, P., Zanda, B. and d'Hendecourt, L.L.S., The amino acid and hydrocarbon contents of the Paris meteorite: Insights into the most primitive CM chondrite. Meteorit Planet Sci, 2015, 50, 926-943.

[4] Iuliia Myrgorodska, Cornelia Meinert, Zita Martins, Louis le Sergeant d’Hendecourt, Uwe J. Meierhenrich. Quantitative enantioseparation of amino acids by comprehensive two-dimensional gas chromatography applied to non-terrestrial samples. Journal of Chromatography A, 2016, 1433, 131-136

[5] C. Meinert, U.J. Meierhenrich, Derivatization and multidimensional gas-chromatography resolution of a-alkyl and a-dialkyl amino acid enantiomers, ChemPlusChem, 2014, 79, 781-785

[6] L. d’Hendecourt and E. Dartois, Interstellar matrices: the chemical composition and evolution of interstellar ices as observed by ISO, Spectrochim. Acta A Mol. Biomol. Spectrosc., 2001, 57, 669–684

How to cite: Garcia, A., Meinert, C., Poinot, P., and Danger, G.: Orbitrap and GC-Orbitrap for in situ analyses: clues from laboratory experiments, Europlanet Science Congress 2022, Granada, Spain, 18–23 Sep 2022, EPSC2022-1075, https://doi.org/10.5194/epsc2022-1075, 2022.

16:15–16:30
|
EPSC2022-1194
Maria Mora, Miranda Kok, Aaron Noell, and Peter Willis

Ocean worlds in our Solar System have captivated the attention of scientists due to the presence of liquid water that could make it possible for these worlds to harbor life. Because all life on Earth is built from a selected set of organic molecules, clear patterns appear in the relative distribution of organics when a sample has a biotic origin.  A powerful approach in the search for life involves seeking for such chemical patterns. The liquid-based separation technique of capillary electrophoresis (CE) holds unique promise for this task. CE is a high-resolution separation technique for molecules in solution that allows the analysis of a broad range of compounds using a relatively simple instrumental set up. CE separations occur within small diameter glass capillaries (25-100 mm I.D.) filled with a background electrolyte. CE is an ideal candidate for in situ planetary missions, especially to areas where aqueous analysis is required. 

Although CE can be coupled to multiple detectors, mass spectrometry (MS) is particularly attractive for planetary exploration because it adds another separation dimension based on mass-to-charge (m/z) ratios. Although there are multiple ionization techniques to couple CE to MS, the most common one is electrospray ionization (ESI). With ESI, the compounds that are separated by CE can be efficiently transferred from the liquid phase into the gas-phase. The coupling of CE and MS allows detailed characterization of biomolecules, and more importantly the identification of unknowns in complex mixtures. We have recently reported on the development of a CE instrument that can be coupled to multiple detection systems, including MS 1. Other detectors include laser-induced fluorescence for sensitive analysis of amino acids and contactless conductivity detection for analysis of inorganic ions and organic acids. This system is under development for biosignature detection as part of the Europan Molecular Indicators of Life Instrument (EMILI)2 and the Ocean Worlds Life Surveyor (OWLS).

Based on the major constituents potentially expected in the oceans of Enceladus and Europa, we used NaCl and MgSO4 salts to evaluate the effect of Na+, Mg2+, Cl-, and SO42- on the detection of a wide range of organics by CE-MS using a sheathless interface 3. We have selected a mixture of amino acids, peptides, nucleosides, and nucleobases for this study, all of which are building blocks of the main polymers of terrestrial biology and are associated with at least one of the rungs of the Ladder of Life. We demonstrate CE-MS limits of detection for these organics ranging from 0.05 to 1 mM (8 to 8 ppb), in the absence of salts. More importantly, organics in the low mM range (1 to 50 mM) are detected by CE-MS in the presence of 3 M NaCl without desalting, preconcentration or derivatization 3. The applicability of CE-MS for analysis of challenging natural samples was demonstrated by analysis of samples from Mono Lake. Multiple organics were detected in the sample despite the presence of a salt front. These results demonstrate the potential of CE-MS for in situ organic analysis on future missions to ocean worlds.

How to cite: Mora, M., Kok, M., Noell, A., and Willis, P.: Capillary Electrophoresis Coupled to Mass Spectrometry for the Detection of Organics in High Salinity Samples Relevant to Ocean Worlds, Europlanet Science Congress 2022, Granada, Spain, 18–23 Sep 2022, EPSC2022-1194, https://doi.org/10.5194/epsc2022-1194, 2022.

L1.128
|
EPSC2022-1252
|
ECP
Arnaud Sanderink, Fabian Klenner, Jan Zabka, Frank Postberg, Jean-Pierre Lebreton, Illia Zymak, Gaubicher Bertrand, Bernd Abel, Ales Charvat, Barnabé Cherville, Laurent Thirkell, and Christelle Briois

In 2005, a new type of mass spectrometer was commercialised for the first time, the Thermo Fisher Scientific OrbitrapTM. Using a Quadro-Logarithmic Electrostatic Ion Trap technology, Orbitrap mass spectrometers are able to reach ultra-high mass resolution1. For a decade, the Laboratoire de Physique et Chimie de l’Environnement et de l’Espace (LPC2E) is developing a spatialised version of the Orbitrap, the CosmOrbitrap2, to bring this high resolution in space exploration. The CosmOrbitrap is intended to be the mass analyser and acquisition system of laser ablation mass spectrometers aiming for planetary bodies like Europa or the Moon3,4.

In this context, OLYMPIA - Orbitrap anaLYser MultiPle IonisAtion – has been develop to be used as a new laboratory test bench, and is adaptable to different ionisation methods. After a successful study of planetary atmosphere analogues using Electron Ionisation (EI)5, we now coupled OLYMPIA with the Laser Induced Liquid Beam Ion Desorption technique to analyse liquid water samples. For example, LILBID is able to accurately reproduce hypervelocity impact ionisation icy grains mass spectra6, such as those recorded by the Comic Dust Analyser7 (CDA) onboard Cassini in the vicinity of Saturn’s icy moon Enceladus. The LILBID setup is usually coupled with a Time-of-Flight (TOF) mass spectrometer, with a mass resolution of ~800 m/Δm. By coupling the LILBID technique to OLYMPIA and its Orbitrap analyser, we are now able to record hypervelocity icy grains analogue mass spectra with ultra-high mass resolution. The setup is currently able to measure H2O+ and H3O+ ions with a mass resolution of around 150.000 m/Δm (FWHM), with the spectral appearance matching mass spectra of icy grains impact ionisation in an impact velocity range of 15 to 20km/s. Future work aims to simulate lower impact velocities below 15 km/s as they are typically expected for flyby or orbiter missions.

Those results will be implemented in the LILBID database8, and will be useful for the calibration and future data interpretation of the SUrface Dust Analyser (SUDA) mass spectrometer9, which will be onboard NASA’s Europa Clipper mission10 to characterize the habitability of Jupiter’s icy moon Europa.

 

References

1. Makarov, A. Electrostatic Axially Harmonic Orbital Trapping: A High-Performance Technique of Mass Analysis. Anal. Chem. 72, 1156–1162 (2000).

2. Briois, C. et al. Orbitrap mass analyser for in situ characterisation of planetary environments: Performance evaluation of a laboratory prototype. Planet. Space Sci. 131, 33–45 (2016).

3. Arevalo, R. et al. An Orbitrap-based laser desorption/ablation mass spectrometer designed for spaceflight. Rapid Commun. Mass Spectrom. 32, 1875–1886 (2018).

4. L. Willhite et al. CORALS: A Laser Desorption/Ablation Orbitrap Mass Spectrometer for In Situ Exploration of Europa, 2021 IEEE Aerospace Conference (50100), 2021, pp. 1-13, doi: 10.1109/AERO50100.2021.9438221.

5. Zymak, I. et al. OLYMPIA - a compact laboratory Orbitrap-based high-resolution mass spectrometer laboratory set-up: Performance studies for gas composition measurement in analogues of planetary environments. https://meetingorganizer.copernicus.org/EGU21/EGU21-8424.html (2021) doi:10.5194/egusphere-egu21-8424.

6. Klenner, F. et al. Analogue spectra for impact ionization mass spectra of water ice grains obtained at different impact speeds in space. Rapid Commun. Mass Spectrom. 33, 1751–1760 (2019).

7. Srama, R. et al. The Cassini cosmic dust analyser. Space Sci. Rev. Volume 114, 465–518 (2004).

8. Klenner, F. et al. Developing a Laser Induced Liquid Beam Ion Desorption Spectral Database as Reference for Spaceborne Mass Spectrometers. Earth and Space Science Under Review (2022).

9. Kempf, S. et al. SUDA: A Dust Mass Spectrometer for Compositional Surface Mapping for a Mission to Europa. European Planetary Science Congress 2014, EPSC2014-229.

10. Howell, S. M. & Pappalardo, R. T. NASA’s Europa Clipper—a mission to a potentially habitable ocean world. Nat. Commun. 11, 1311 (2020).

How to cite: Sanderink, A., Klenner, F., Zabka, J., Postberg, F., Lebreton, J.-P., Zymak, I., Bertrand, G., Abel, B., Charvat, A., Cherville, B., Thirkell, L., and Briois, C.: OLYMPIA-LILBID: High Resolution Mass Spectrometry for the Calibration of Spaceborne Hypervelocity Ice Grain Detector, Europlanet Science Congress 2022, Granada, Spain, 18–23 Sep 2022, EPSC2022-1252, https://doi.org/10.5194/epsc2022-1252, 2022.

L1.129
|
EPSC2022-1259
|
ECP
Laura Selliez, Christelle Briois, Nathalie Carrasco, Laurent Thirkell, Bertrand Gaubicher, Jean-Pierre Lebreton, and Fabrice Colin

How Life has emerged on Earth? Can we find signs of Life on other celestial bodies in the Solar System? Are they harboring liquid water and complex-enough organic matter to initiate Life? What actually complex-enough organic matter means? Among other scientific questions, those related to astrobiology drive the future space missions for decades to come. The search for organic compounds in the Solar System, such as bio- and prebiotic molecules, has been defined as one of the highest priority by the Space Agencies [1, 2].

Significant improvements of the analytical performances of the future instruments will increase our knowledge of targets of interest for the search of Life, present or past, such as comets, asteroids, icy moons or ocean worlds. New generation of High Resolution Mass Spectrometers (HRMS) is currently being developed in order to provide univocal identifications, study of isotopic abundances and determination of mixing ratios with high analytical performances [3-6], including very HRMS-CosmOrbitrap based under collaborative development with University of Maryland/NASA Goddard Space Flight Center. The CosmOrbitrap mass analyzer is mainly funded by CNES, the French space agency, and developed by a consortium of 6 laboratories (LPC2E, LATMOS, LISA, IPAG, IJC lab, J. Heyrovsky Institute of Physical Chemistry) [7].

Here we address the results of a repeatability study based on three organic compounds and obtained with the LAb-CosmOrbitrap (Laser Ablation CosmOrbitrap) equipped with a commercial laser ionization system at 266 nm and no C-trap system. Organics studied are nitrogenous and sulfurous compounds, HOBt (C6H5N3O+H) at m/z 136 and BBOT (C26H26N2O2S+H) at m/z 431; and a prebiotic compound, the well-known adenine (C5H5N5+H) at m/z 136.

Hundreds of mass spectra have been recorded to demonstrate the reproducible analytical performances of the laser-CosmOrbitrap set-up. Mass resolving power has been studied as a function of the acquisition time and the FFT length. Different kind of mass calibrations have been tried to show the effect on the mass accuracy (internal mass calibration on the species of interest and external mass calibration on the metallic sample-holder). Finally, preliminary results on isotopic abundances (13C/12C, 15N/14N and 34S/32S replacements) have been obtained.

This work provides key information for specifying the required performances of future HRMS space instruments.

 

Acknowledgement: We thank the Centre National des Etudes Spatiales (CNES), the French space agency, for their financial support.

References:

[1] National Academies (2022) Origins, Worlds and Life.

[2] ESA (2021) Voyage 2050

[3] Waite et al. (2019) Abstract Vol.13, EPSC-DPS2019-559-1

[4] Shimma et al. (2010) Anal. Chem. 82, 20, 8456-8463

[5] Willhite et al. (2021) IEEE Aerospace, 1 – 13

[6] Willhite et al. (2021) Annual Meeting of the Lunar Exploration Analysis Group, LPI Contribution No. 2635, id.5034

[7] Briois et al. (2016) PSS 131, 33 – 45

How to cite: Selliez, L., Briois, C., Carrasco, N., Thirkell, L., Gaubicher, B., Lebreton, J.-P., and Colin, F.: The potential of the LAb-CosmOrbitrap for future space studies in astrobiology, Europlanet Science Congress 2022, Granada, Spain, 18–23 Sep 2022, EPSC2022-1259, https://doi.org/10.5194/epsc2022-1259, 2022.

MITM11 | Tools and Data Analytics for Solar and Planetary Sciences

10:45–11:00
|
EPSC2022-111
Mark Bentley, Michael Breitfellner, Daniela Coia, Ruben Docasal, David Heather, Emmanuel Grotheer, Tanya Lim, Bruno Merín, Joaquim Oliveira, Jose Osinde, Fran Raga, Jaime Saiz, and Ricardo Valles

The European Space Agency’s Planetary Science Archive (PSA) is the home for all scientific data from ESA’s planetary missions. Adopting the NASA PDS standard (version 3 and 4) it is designed to make the data, meta-data and knowledge on how to use them available to the scientific community. As a multi-mission archive, the PSA supports (or will soon support) over ten missions and their associated instruments, with this number expected to grow significantly in the coming years. 

The PSA has a long legacy of successfully preserving and distributing mission data to the community, and offers several services to fulfil this, including tabular, image-based and map-based interfaces, several APIs and traditional FTP. However, the entry barrier for new users is quite high, and moving forward there are new data access requirements coming from scientists wanting to perform more complex queries, run machine learning algorithms and so on. This presentation will describe the current infrastructure, recent updates and plans for the next few years which will try to address these changing needs. 

In particular, the following key developments are foreseen: 

  • implementation of a new user interface, with a streamlined and more user-friendly design, which will also work well on mobile, and touchscreen displays,
  • improvements to APIs to include more data (specifically instrument geometry), and to incorporate the new PDS API which will allow access to any meta-data in the data products, leveraging the full value of the effort put in by instrument teams and archive scientists to curate them,
  • integration with ESA DataLabs, a project designed to “bring the code to the data” and allow data processing and analysis to be done in an interactive online environment hosted close to the data repository and allowing big data workflows without having to download the products,
  • publication of data tutorials based on open-source tools and libraries, to give new users a “quick start guide” to using data from a given instrument, and 
  • a much higher frequency release cadence, responding to the needs of the scientific community in a timely manner. 
 

 Finally, community input is sought on other improvements which could be made, and which use cases are not fulfilled by the current infrastructure. 

How to cite: Bentley, M., Breitfellner, M., Coia, D., Docasal, R., Heather, D., Grotheer, E., Lim, T., Merín, B., Oliveira, J., Osinde, J., Raga, F., Saiz, J., and Valles, R.: ESA’s Planetary Science Archive: current status and future plans, Europlanet Science Congress 2022, Granada, Spain, 18–23 Sep 2022, EPSC2022-111, https://doi.org/10.5194/epsc2022-111, 2022.

L1.134
|
EPSC2022-127
Ruben Docasal, Fernando Felix-Redondo, Joaquim Oliveira, Jose Osinde, Francisco Raga, Jaime Saiz, Ricardo Valles, Bruno Merin, Mark Bentley, Daniela Coia, Emmanuel Grotheer, David Heather, and Tanya Lim

 

Introduction: The present abstract is intended to show the current ESA’s Planetary Science Archive (PSA) [1] in terms of architecture/infrastructure and the future interfaces and technologies which will be used in the next generation archive.

These improvements range from a new graphical user interface developed in Angular to a TAP+ (Table Access Protocol) service as a single access to the data, through a new way of releasing new versions of the PSA more frequently to the scientific community.

The PSA development team expects to release this new generation of the PSA this summer 2022.

PSA current architecture: The PSA architecture and the technologies involved in its development have only undergone incremental updates in the last 6 years, and are now seen as somewhat obsolete. The front-end has been implemented using the Vaadin framework, which was initially a good strategy, but over time became onerous to maintain (e.g., dealing with JavaScript libraries, wasting time in wrapping some required extensions in Java).

Also, from the back-end point of view, there are many interfaces/libraries to access the database (JDBC, PDAP, Data Distribution, etc) forcing us to double the effort when changing the API (see Figure 1: PSA current architecture)

In addition, the PSA release approach has not followed a truly Agile approach, taking too long in releasing operationally. This is mainly due to the fact there is no a fully CI/CD strategy to be executed in the environments, leading to very manual release process with manual interventions. Also there are additional problems such as the synchronisation of the repositories when releasing, which strongly depends on the IT department.

Figure 1: PSA current architecture

New interfaces, technologies and infrastructure at PSA: After one year and half of development, the PSA development team has been able to achieve several goals on the roadmap to a new archive. Mainly, we will rely on a new graphical user interface implemented under the Angular framework (see Figure 2: Future PSA Graphical User Interface). There have been various reasons to migrate to this new technology: Faster development for maps visualisation and 3D interfaces, alignment within the ESDC department in a common front-end framework and also, the discontinuation of Vaadin 8 from March 2022 on.

This future GUI will have a modern look and feel, with some relevant changes in line with the new ESA branding. Specially on the home view, where there are now card layouts to access the data from missions/instruments, targets and maps and a prototype traverse view for the ExoMars Rover mission, among other features. This new Angular framework has definitely sped the development up when modifying some JavaScript libraries, creating some end-to-end tests on top through Cypress, etc. This will also increase the performance on the client side consequently improving the user experience. In addition, this implementation is also mobile and tablet friendly/responsive.

Figure 2: Future PSA Graphical User Interface

Also, the new PSA will count on a single access point to the data through TAP+ (even private data) to homogenise the access by offering a single API, instead of using different interfaces/protocols (JDBC, PDAP, etc.) to access the information.

In addition to these new interfaces, the PSA is making a huge effort to set up an infrastructure to support a faster deployment cycle in order to be more agile according to the scrum methodology. This implies integrating and deploying the software (after checking metrics in Sonar, passing the end-to-end tests, etc.) as nightly builds into a safe environment (pre-production) so that the Archive Scientists can test the latest features which, once approved, will go to the operational environment. This follows mostly a DEV-OPS infinite loop but having a middle environment (PRE) in which the scientists can safely test the features.

Conclusion: The current PSA development team along with the Science Lead and all of the Archive Scientists are working together to produce a new generation of the planetary archive, with these features:

  • a more modern and responsive GUI based on a stable and well-known technology
  • a single access route to the data with authentication and authorization for private products (TAP+)
  • a new infrastructure of environments which allow a more efficient CI/CD so that the features can be validated earlier, allowing the PSA to offer releases in the operational environment more frequently.

References:

[1] Besse, S. et al. (2017) Planetary and Space Science, 10.1016/j.pss.2017.07.013, ESA's Planetary Science Archive: Preserve and present reliable scientific data sets.

Acknowledgments: The authors would like to thank everybody, especially the PSA development team, who have contributed to the development of the PSA in the recent years and the incoming new generation of the archive.

How to cite: Docasal, R., Felix-Redondo, F., Oliveira, J., Osinde, J., Raga, F., Saiz, J., Valles, R., Merin, B., Bentley, M., Coia, D., Grotheer, E., Heather, D., and Lim, T.: ESA’s Planetary Science Archive: present and future, Europlanet Science Congress 2022, Granada, Spain, 18–23 Sep 2022, EPSC2022-127, https://doi.org/10.5194/epsc2022-127, 2022.

L1.132
|
EPSC2022-294
Carlos Muñiz Solaz, Alejandro Cardesin-Moinelo, Federico Nespoli, Patrick Martin, Julia Marin-Yaseli de la Parra, Donald Merrit, Mar Sierra, and Pilar Esquej and the ESA Planetary Science Operations Centres

The Mission Analysis and Payload Planning System (MAPPS) is a multi-mission software system developed during the last 20 years to support the science operations planning for the ESA solar system missions at the European Space Astronomy Centre (ESAC) near Madrid.

Developed initially only to visualise the coverage of MEX experiments onto the Martian surface. The tool has been evolved progressively to satisfy planning requirements for the different missions that have been launched in the last two decades: SMART-1, Venus Express, Rosetta, Mars Express, Exomars TGO, Bepi Colombo, Solar Orbiter, Juice and EnVision.

The planning requirements sometimes are specific to a mission and on other occasions they are contradicting. As an example, consider the power and thermal requirements of a mission like Bepi Colombo, very close to the sun, in contrast to those same requirements for a mission like Juice, very far away. The complexity of these requirement implies that the software needs to be very configurable and continuously adapting to the needs of each mission.

In recent years, there has been the need to extend even further the tool to support multi-body and constellation coordination capabilities.

In the case of Juice, the spacecraft will spend many months orbiting Jupiter and three of its Jovian moons. This has required a big effort to modify the existing features and observations in MAPPS that were initially developed for a central body to be able to cope with several bodies.

In the case of Mars, the arrival of new spacecrafts and rovers has broadened what can be done scientifically as well as opening the international collaboration among agencies. MAPPS has been extended to facilitate the collaboration with other Mars missions, in particular the new  radio-science experiment between MEX-TGO [1], various communication tests between ESA and NASA orbiters, and the regular data relays in support of all surface assets, including the new Chinese Zhurong mission.

Here we present how MAPPS has contributed and supports the Science Ground Segment teams in ESA to achieve their goal of planning scientific operations in an efficient and optimised way, together with the new features implemented for the ever more demanding needs of the new scientific missions.

[1] Cardesin Moinelo, A. et al: First year of coordinated science observations by Mars Express and ExoMars 2016 Trace Gas Orbiter, ICARUS 353, 2021

 

How to cite: Muñiz Solaz, C., Cardesin-Moinelo, A., Nespoli, F., Martin, P., Marin-Yaseli de la Parra, J., Merrit, D., Sierra, M., and Esquej, P. and the ESA Planetary Science Operations Centres: MAPPS as a multi-mission and multi-body Science Planning and Simulation Tool for ESA solar system missions, Europlanet Science Congress 2022, Granada, Spain, 18–23 Sep 2022, EPSC2022-294, https://doi.org/10.5194/epsc2022-294, 2022.

10:25–10:35
|
EPSC2022-323
Marco Delbo, Chrysa Avdellidou, Nicolas Bruot, and Stephane Erard

Introduction

The small bodies (also known as minor planets) in our solar system are usually discovered by telescopic surveys. The results of these observations are organised by the Minor Planet Center (MPC), which determines orbits from the astrometric observations of the surveys. As of May 15, 2022, the MPC has an orbit database of 1,193,635 minor planets. However, the MPC data do not tell us what a minor body actually is, as they not contain physical properties such as albedo, diameter, volume, shape, composition, mass, bulk density, period of rotation and direction in the sky of the axis of rotation. Asteroids have very diverse values of these physical properties, whose knowledge is important for scientific studies of our solar system and its origin, planetary formation and evolution, space exploration, and planetary defence.

The physical properties of small bodies are spread across many publications, several websites (e.g. the NASA planetary data service) and archives. Many compositionally diagnostic spectra are also presented in a series of publications, but their source files are not necessarily public. This poses a fundamental problem to our ability to massively exploit the physical properties of minor bodies. Moreover, the values ​​of these physical parameters are extremely heterogeneous, obtained by several different groups, project teams and telescopic surveys, and even individual researchers, using different techniques. For example, thermal models are used to interpret observations in the mid-infrared (between 3.5 and 100 μm) from space and from the ground for the measurement of diameters and albedos. However, other techniques such as radar or the measurement of stellar occultation times provide measurements of diameters.

 

A centre of minor planets’ physical properties 

The Minor Planet Physical Properties Catalogue, or MP3C for short, collects and organises in a single place and makes available to the community values of physical properties of asteroids and other small bodies of our solar system. The MP3C is designed for very heterogeneous and big amount data: as of March 2022 it contains 3,710,587 measured properties, all of which are fully referenced to their published sources. The MP3C offers two main interfaces to explore the data (Figs. 1 and 2), namely (i) a web portal (mp3c.oca.eu) that allows to perform extraction of physical properties values on the basis of a single or list of minor bodies identifiers (names, numbers), but also on ranges of physical and dynamical properties; (ii) a data server offering a Table Access Protocol (TAP), which is defined and compatible with the standards of the Virtual Observatory (VO). The data server is accessible at https://dachs.oca.eu. MP3C is registered as service of the Virtual Observatory and therefore searchable and accessible using Virtual Observatory tools such as TOPCAT (Fig. 2). Using TOPCAT and/or the TAP, a human or robotic user can perform queries in a standardised database language (ADQL). MP3C contains sizes, albedos, absolute magnitudes, masses and rotational period, along with osculating and proper orbital elements of 1,169,632 minor bodies. At the time of writing we are also implementing in the MP3C table of spectral classes, colours, rotation vector orientation, and later reflectance spectra of minor planets.

 

Interface with the Virtual European Solar and Planetary Access of EUROPLANET

In addition to the general TAP interface, the best current determinations of all parameters and objects are accessible via the EPN-TAP protocol. EPN-TAP, designed in Europlanet/VESPA, uses a specific metadata vocabulary to uniformly describe Solar System data, which facilitates cross-searches in various data services - for instance, several services providing spectra of small bodies are also accessible in this format. All EPN-TAP services can be queried from the VESPA portal (http://vespa.obspm.fr) or from scripts in various languages, e.g. for mass processing.

 

The future big data challenge

In the future, the problem of the spreading of small-body physical properties will become very important: Soon, the Near-Earth Object Surveyor Telescope, decided to be implemented by NASA's Planetary Defense Coordination Office in the fall of 2019, with a launch in 2026 will determine the sizes and albedos of nearly 8 million asteroids from observations of their thermal emission. At the end of 2022 LSST will be commissioned and will begin operations. About two years later, LSST will start publishing the data. In a single visit, LSST detects up to 5,000 solar system objects. Over its 10 year lifespan, LSST could catalog over 5 million Main Belt asteroids, almost 300,000 Jupiter Trojans, over 100,000 near-Earth objects, and over 40,000 trans-neptunian objects. Many of these objects will receive 100s of observations in multiple bandpasses. This amounts to an increase of at least 10× the known population, with similar increases in the number of objects with enough data to generate light-curves and colours. We therefore imagine a very significant increase in the physical properties of asteroids and comets. Clearly the latter is a major big-data problem, which will necessitate scientific and technical implementation skills. 

 

Acknowledgments

M. Delbo and C. Avdellidou acknowledge support from the ANR Origins (ANR-18-CE31-13-0014). The work of C. Avdellidou was also partially funded by he French National Research Agency under the project “Investissements d’Avenir” UCAJEDI with the reference number ANR-15-IDEX-01 (2018-2020). The work of S. Erard for linking MP3C to EUROPLANET VESPA was supported by the the Europlanet-2024 Research Infrastructure project that received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 871149.

Figure 1: (Left) HTML output of all properties listed by MP3C for Pallas. (Right) Search form by list of object identifiers and/or range of their physical and orbital properties.

Figure 2: The MP3C service is accessible via the TAP protocol by the applications of the Virtual Observatory (here, TOPCAT). (Left) List of tables with their description, including the EPNCore table available in particular for the VESPA service. (Right) Graphs and tables obtained by submitting ADQL queries.

 

 

How to cite: Delbo, M., Avdellidou, C., Bruot, N., and Erard, S.: The Minor Planet Physical Properties Catalogue: Connection with the Virtual European Solar and Planetary Access of EUROPLANET and the big data challenge for planetary science, Europlanet Science Congress 2022, Granada, Spain, 18–23 Sep 2022, EPSC2022-323, https://doi.org/10.5194/epsc2022-323, 2022.

11:20–11:30
|
EPSC2022-341
Benoît Seignovert, Gabriel Tobie, Claire Vallat, Nicolas Altobelli, and Inès Belgacem

Abstract: The moon-coverage tool is a Python package currently used by ESA-SOC for the JUICE mission to plan and visualize Jupiter’s moons surface coverage. It supports instrument footprint projections and region of interest intersections.

Introduction: One of the key elements to assess the quality of an observation plan is to visualize its spatial coverage at different scales (global, regional and local). All the planetary missions, past, current and future use JPL/NAIF SPICE kernels to describe the position of the spacecraft and its orientation in space [1]. These files are usually produced by space agencies and require advanced users to interpret them to know when and how a given surface feature is visible on a planetary body.

A planning tool in Python: To simplify the identification of these opportunities, we developed the moon-coverage, a Python package built on top of spiceypy [2] that provides an object-oriented approach to perform spacecraft trajectory computations (Fig. 1), instrument field of view projections (Fig. 2) and region of interest intersections (Fig. 3). Originally developed for the ESA-JUICE mission, the tool can now handle any space mission (Europa-Clipper, BepiColombo, EnVision, Juno…).

Figure 1: JUICE temporal sequence of Europa flyby 7E1 (July 2nd 2032 with crema 5.0b23.1). The top panel represents the altitude of the spacecraft and the bottom the local incident angle. The orange color corresponds to the segment when the local incidence is lower than 90° (day side).

Figure 2: JUICE/MAJIS IR slit footprint during 7E1 flyby below 5,000 km. The trajectory is color-coded as a function of altitude and pixel scale.


Figure 3: ESA/JUICE (red) and NASA/Europa Clipper (cyan) cumulative flybys over Callisto. The groundtrack below 750 km altitude are represented as solid lines. The large rectangles correspond to known regions of interest and are highlighted when the spacecraft groundtrack is intersecting them [3].

Resources: The source-code of the moon-coverage is publicly available on the JUICE Gitlab and distributed under open-source BSD license (https://moon-coverage.univ-nantes.fr). It is continuously tested on Python 3.8+ version and regularly deployed on PyPI. An extensive documentation is also available online with many examples than can be reproduced in Jupyter environments locally or ESA DataLabs.

Future developments: Currently the spacecraft/instrument pointing is based on the default camera kernels (ck). In a future release, we will allow the user to provide a Planning Timeline Request file (PTR) to perform custom adjustment of the attitude. We will also support planetary projections to display the result in polar/orthographic/sinusoidal views.

Acknowledgments: The moon-coverage is under active development at LPG (CNRS) and funded by ESA under 4000127262/19/ES/CM contract.

References: [1] Acton (1996) PSS, [2] Annex et al. (2020) JOSS, [3] Stephan et al. (2021) PSS

How to cite: Seignovert, B., Tobie, G., Vallat, C., Altobelli, N., and Belgacem, I.: The moon-coverage: a Python tool for mission and instrument planning, Europlanet Science Congress 2022, Granada, Spain, 18–23 Sep 2022, EPSC2022-341, https://doi.org/10.5194/epsc2022-341, 2022.

18:15–18:25
|
EPSC2022-347
Sebastien Hess and Ludivine Leclercq

Spacecraft in the space environment plasma collect and emit charged particles ending charging themselves. Even with the best specification, the spacecraft potential charge to a potential of the order of the ambient electron temperature, which impact the instrument ability to investigate the thermal plasma characteristics. The most impacted instruments are the particle detector which see a distortion both in arrival direction and energy, and the plasma and field sensors which are perturbed by the electrostatic sheath around the spacecraft. In order to improve the space mission data analysis, the Spacecraft-Plasma Interaction Software (SPIS) has been developed by ONERA and Artenum, with support from the ESA, the CNES and the SPINE Community which gathers European academic and industrial partners and the charging issues. However, the precision of its modelings depends on the accuracy of its inputs, particularly concerning the plasma environment populations. In the frame of the Europlanet 2024 RI project funded by the European Commission, we developed a connection between SPIS and the main environment databases through the SPASE framework. Using the Simulation extension to SPASE, the IMPEX planetary environment simulation databases are also accesible. In addition, this extension allowed us to develop algorithms that allow to retrieve semi-automatically the data of interest (i.e. that can be exploited by software) in a whole database and to handle them properly. We will demonstrate the capability of the software - database connection to analyze instrument measurements and show the capability of SPASE to provide the metadata needed for the automatic processing of the data by client tools.

How to cite: Hess, S. and Leclercq, L.: Coupling the Spacecraft-Plasma Interaction Software to the Space Environment Databases, Europlanet Science Congress 2022, Granada, Spain, 18–23 Sep 2022, EPSC2022-347, https://doi.org/10.5194/epsc2022-347, 2022.

10:00–10:15
|
EPSC2022-676
Stéphane Erard and the VESPA team

VESPA (Virtual European Solar and Planetary Access) has focused for 10 years on adapting Virtual Observatory (VO) techniques to handle Planetary Science data [1] [2]. The objective of this activity is to build a contributory data distribution system both to access and publish data with minimum fuss. This system is responsive to the new paradigm of Open Science and FAIR access to the data, and is optimized to publish data from public-funded programmes with limited resources.

VESPA’s architecture was defined during the previous Europlanet-2020-RI program, incorporating concepts and standards from various areas: astronomy, Earth observation, space physics, heliophysics, etc. It relies on the VO infrastructure: data services are installed in any location but are declared in a system of harvested registries with identifiers, end-point (URL), mention of supported access protocols, and a rough description of content. Such services are interoperable via clients and tools, which also provide visualization and analysis functions.

The activity in Europlanet-2024-RI focuses on expanding this environment, enforcing sustainability, and opening new possibilities to improve data handling – such as workflows, cloud-based computation, and readiness for exploitation through Machine Learning techniques.

Data access. VESPA uses a specific access protocol called EPN-TAP, associated with a metadata vocabulary providing uniform description of datasets in the field. At the time of writing EPN-TAP is in the final stage of becoming a Recommendation of the International Virtual Observatory Alliance (IVOA) [3].

EPN-TAP is compliant with the general TAP protocol, allowing usage of existing VO tools and communication protocols with data services pertaining to Solar System studies. Some VO tools (TOPCAT, Aladin, CASSIS) are also adapted to improve handling of such data, e.g. visualisation of footprints (spatial or temporal), reflected light, or spectral cubes on planetary surfaces. In parallel, OGC-compliant definitions of planetary coordinate reference systems will facilitate the use of GIS tools in Planetary Science.

The VESPA portal, intended as a discovery tool to browse the EPN-TAP services, is being redesigned to improve the user experience (new version expected to be released for the conference). Other, more specific access modes (via script, web services, Jupyter notebook, VO tools, etc) are also available.

Data services. 67 EPN-TAP data services are currently searchable from the VESPA portal, and about 20 are in development phase. Contributions from space agencies have increased significantly this year, with now 25+ million files in ESA’s PSA, and 60 datasets from the NASA PDS PPI node (declared in the IVOA registry but not yet reviewed for the portal). New services include atmospheric modelling from GCM (Venus and Mars), surface and asteroid spectra, radio observations, solar databases, and tables from published articles at CDS/VizieR. Larger data infrastructures with EPN-TAP interface (AMDA, SSHADE, PVOL) also develop their content and capacities, e.g. this year band lists have been implemented in SSHADE, and support for long time series in AMDA. An implementation workshop associated to a call for data services from the community was held in Nov 2021, and two more workshops are scheduled in the course of the programme.

Service implementation support. The standard procedure to implement services has been greatly enhanced with new releases of DaCHS (a VO data server by Heidelberg University) and TOPCAT (a VO tool for tabular data by the University of Bristol). Both tools fully support the current version of EPN-TAP and greatly facilitate the set-up of new data services: DaCHS includes a predefinition of standard EPN-TAP parameters (with units and UCDs), while TOPCAT includes an EPN-TAP validator. A Docker version of DaCHS is available for assessment purposes. Existing data services have been reviewed for compliance, and most of them have been upgraded to benefit from the latest developments. In many cases, their content has been extended with new data and functions.

Service access. The recent upgrade also addresses low-level technical aspects, e.g. related to declaration in the IVOA registry. Most EPN-TAP services are now declared in compliance with recent evolutions of the VO, and are findable independently from the portal.

Sustainability. Definition files of all services are stored in a unique gitlab for preservation and maintenance by several VESPA teams. Gitlab authentication is granted by GÉANT/eduTEAMS. This is a simple and efficient way to share the technical expertise among services and teams, and to improve sustainability.

Implementation of data services on EOSC (the recent European Open Science Cloud) was assessed during the VESPA-cloud project supported by EOSC-Hub, through its 2nd Early Adopter Program (2020-21). EPN-TAP services can be deployed on EOSC inside Virtual Machines or Docker containers, from the same gitlab installation used to preserve the services. This will provide a workaround to services temporary unavailability, for performing cloud-based computation on data services, and a solution for data providers who are not able or not willing to host a VESPA server for a long period of time.

Coming data services. Data produced by other WP in Europlanet-2024 will distribute their results using the VESPA infrastructure: other VAs (SPIDER, GMap, ML), NA2 (telescope network and other pro-am projects), and TAs (lab experiments and field studies). VESPA is of course also available to distribute data from other H2020 programmes in the field. An interface with space agency archives will make use of the recent PDS4 dictionary for EPN-TAP (in addition to the existing EPN-TAP interface on ESA’s PSA).

Prospects. Detailed examples of recent VESPA developments are provided in this session and related ones. The focus will shift again next year to new data services, with the finalization of several projects, in particular related to the Moon, Mercury, and exoplanets. A workflow platform will also be connected to perform run-on-demand (the OPUS system also used by the ESCAPE H2020 programme) and cloud-based activity will expand.

 

The Europlanet-2024 Research Infrastructure project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreements No 871149.

 [1] Erard et al 2018, Planet. Space Sci. 150, 65-85. 10.1016/j.pss.2017.05.013. ArXiv 1705.09727  

 [2] Erard et al. 2020, Data Science Journal 19, 22. doi: 10.5334/dsj-2020-022.

 [3] https://ivoa.net/documents/EPNTAP/ 

How to cite: Erard, S. and the VESPA team: Virtual European Solar & Planetary Access (VESPA) 
2022: Sustainability, Europlanet Science Congress 2022, Granada, Spain, 18–23 Sep 2022, EPSC2022-676, https://doi.org/10.5194/epsc2022-676, 2022.

10:35–10:45
|
EPSC2022-778
bernard Schmitt, Damien Albert, Manon Furrer, Philippe Bollard, Lucia Mandon, Maria Gorbacheva, Lydie Bonal, and Olivier Poch

Introduction

The SSHADE database infrastructure (http://www.sshade.eu) hosts the databases of about 30 experimental research groups in spectroscopy of solids from 15 countries. It currently provides to all researcher over 5000 spectra of many different types of solids (ices, minerals, carbonaceous matters, meteorites…) over a very wide range of wavelengths (mostly X-ray and VUV to sub-mm)

However, although these data are invaluable for the community, one type of information is still critically missing to easily interpret laboratory, field or astronomical spectra: the list of the characteristics (band position, width, intensities, transition attribution, …) of the absorption bands of a given solid, called its ‘band list’.

This type of database is well developed for gases (see e.g. the VAMDC portal (2)), and it is even frequently the only type of spectral data available. But for solids (and liquids) there is currently almost no database which provides such information (only in some restricted fields, such as Raman spectroscopy of minerals, e.g. the WURM database (3)).  

This critical lack triggered us to develop (within the Europlanet-2024 RI program) such a band list database containing the characteristics of electronic, vibration and phonon bands of various solids (ices, simple organics, minerals) of astrophysical interest to help:

  • identify absorption or emission bands from solids observed in various astrophysical environments or in laboratory simulations
  • determine the environment of the molecule or mineral (composition, isotopes, mixing, phase, T, P, …)
  • select the best spectra in SSHADE to compare with observation, or to use in models

What is a band list of a solid?

A ‘band list’ is a list of band parameters and vibration modes of a molecule in a simple molecular constituent (3 species maximum), or of a mineral or a ionic/covalent solid,  with a well-defined phase and composition (fixed or small range). It includes the bands of all isotopes (sub-bandlists) and can be provided for different environments (T, P, …).

 

The SSHADE 'band list' database provides the band parameters (position, width, peak and/or integrated intensity, and their accuracy, isotopic species involved, mode assignment, ...) of a progressively increasing number of solids and simple compounds (with different compositions) of astrophysical and planetary interest in various phases (crystallines, amorphous, ...) at different temperatures or pressures.

We are feeding this database through exhaustive compilations and critical reviews of all data published in various journals for pure ices and molecular solids and their simple compounds (solid solution, hydrates, clathrates, ...), including the own works of the SSHADE consortium partners. We will continue in a second step with band lists of minerals. However, this is a tremendous scientific work, expected to last many years… For example, the infrared spectrum of pure solid CO in its cubic α phase has been the subject of more than 35 papers scattered in 25 different journals over the period 1961-2020…

 

SSHADE band list database and interface

A specific data model, SSDM-BL (Solid Spectroscopy Data Model – Band List), has been first developed in order to accurately describe and link all the parameters necessary to describe both the solid constituent and the band list itself. A structured database storing all these data and metadata, has then be set up based on this data model. A data review tool (excel file), a data convertor to a XML import file, as well as a data import tool have been developed to feed the database.

Then an efficient search tool allows you to search either a band list or a specific band thanks to a combination between a ‘search bar’ and a set of filters on various parameters, such as band position, width and intensity, expected molecular or atomic composition, type of vibration, temperature and pressure. The search result are provided as a table with band list title or the main band parameters allowing the users to select the most relevant ones. He can then display the selected band list graphically, thanks to a simulator of ‘band list spectra’, with various unit and display options. The data can be exported as a table containing the main parameters of all the bands of the band list, as well as detailed metadata of the band list and all its bands. A data reference and a DOI will be associated with each band list.

SSHADE in Virtual Observatory

SSHADE-Bandlist will be later a service of the VESPA Virtual Planetary Observatory. It will be accessible via the EPN-TAP protocol, which will allow comparison with observational data and mass processing in the VESPA environment through a series of dedicated spectroscopy plotting and analysing tools.

Conclusion

This band list database should become a key tool for astronomers and planetary scientists to identify unknown absorption bands observed in the spectra of the surface or atmosphere of many astrophysical and solar system objects. Once the best candidate solid found by the user, the tool will link to the most relevant spectral datasets present in the SSHADE databases. These data can then be used for direct comparison with observations, or to model them through radiative transfer codes.

However its feeding will strongly depend on the scientific manpower available, and on the contribution of the SSHADE partners and of the community.

Acknowledgements

The Europlanet 2024 Research Infrastructure project received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 871149. We also acknowledge OSUG, and INSU for additional financial supports.

 

References

  • Schmitt, B., et al. (2018) SSHADE: "Solid Spectroscopy Hosting Architecture of Databases and Expertise" and its databases. OSUG Data Center. Service/Database Infrastructure. doi:26302/SSHADE
  • Dubernet, M. L., et al. (2016). The Virtual Atomic and Molecular Data Centre (VAMDC) Consortium. Phys. B: At. Mol. Opt. Phys., 49, 074003 [doi:10.1088/0953-4075/49/7/074003]
  • WURM project (http://www.wurm.info)

How to cite: Schmitt, B., Albert, D., Furrer, M., Bollard, P., Mandon, L., Gorbacheva, M., Bonal, L., and Poch, O.: SSHADE-BandList, the new database of spectroscopy band lists of solids, Europlanet Science Congress 2022, Granada, Spain, 18–23 Sep 2022, EPSC2022-778, https://doi.org/10.5194/epsc2022-778, 2022.

MITM12 | Planetary Missions, Instrumentations, and mission concepts: new opportunities for planetary exploration

18:20–18:30
|
EPSC2022-896
Petri Toivanen, Pekka Janhunen, Jarmo Kivekäs, Sean Haslam, Jouni Polkko, and Iaroslav Iakubivskyi

Two 3-unit cubesats, FORESAIL-1 and ESTCube-2 soon to be launched (2022), both accommodate an electrostatic tether that can be charged to a high voltage with respect to the ambient ionospheric plasma in low-Earth orbit. The high voltage sheath around the tether serves as an electrostatic obstacle that perturbates the plasma ram flow causing Coulomb drag and a net braking force to reduce the orbital speed of the tether-spacecraft system.


According to the theory and particle-in-cell computer simulations, the Coulomb drag is a promising candidate for propellantless and continuous low-thrust propulsion in the solar wind with the plasma flow speeds typically being 440 km/s. In this presentation, we review its applications both to interplanetary missions as in ESA call for ideas, 2016, a 50-cubesat fleet to the main belt asteroids, and to space debris mitigation as in ESA cleansat building block 15, electrostatic tether plasma brake, 2017.


The key components of our payloads are a reeling system for the tether deployment and a high voltage power system: FORESAIL-1 (-1 kV); and ESTCube-2 (-1 kV, +0.5 kV, and +1.0 kV). In this presentation, we describe these payloads in further detail: The reeling system is such that the tether reel is supported by a ceramic bearing and rotated by a stepper motor and associated driver electronics. The 60-metre long tether is manufactured by knitting out of four thin aluminium wires with individual wire thickness of 50 micrometre. The multi-wire structure is required for redundancy against micrometeoroids. The tether is deployed by the centrifugal force provided by an end mass at the tip of the tether. During the launch, the reel and the end mass are secured by launch locks. The high voltage contact to the tether reel is realised by a slider connector. The payload electronics also contain the control electronics and electric power system. All this is miniaturised in order the payload spatial sizes to be less than that of one cubesat unit.


Concerning the high voltage polarity, the positive (negative) tether naturally collects electron (ion) current from the ambient plasma as electrons (ions) tend to neutralise the positive (negative) tether bias. Thus the high voltage system has to maintain the selected tether bias. In the solar wind, it is preferable to use the positive bias as it can be maintained by using electron emitters that are much simpler than the ion emitters. In the ionosphere, the plasma number density is large enough, and no ion emitter is required as an electron collecting surface as a conducting part of the spacecraft can be incorporated instead. For this reason, the payload on board ESTCube-2 has two electron emitters to enable the testing of the positive polarity high voltage system and the electron emitters for future development of the Coulomb drag propulsion in the solar wind. As a third topic of our presentation, the basics of the Coulomb drag propulsion are shortly covered.


Our tether payloads have been designed and built to measure the braking force caused by the Coulomb drag to the electrostatic tether in a low-Earth orbit plasma environment. It is a cornerstone measurement in the roadmap of evaluating Coulomb drag as space propulsion. On our roadmap, we are already developing a 6-unit cubesat (FORESAIL-2) for experiments in geostationary transfer orbit and further envisioning FORESAIL-3 and ESTCube-3, for example  in lunar transfer orbit to measure the Coulomb drag in the solar wind.

 

How to cite: Toivanen, P., Janhunen, P., Kivekäs, J., Haslam, S., Polkko, J., and Iakubivskyi, I.: Cubesat experiments for Coulomb drag propulsion for interplanetary missions and space debris mitigation, Europlanet Science Congress 2022, Granada, Spain, 18–23 Sep 2022, EPSC2022-896, https://doi.org/10.5194/epsc2022-896, 2022.

L1.138
|
EPSC2022-1091
|
ECP
Pietro Dazzi, Pierre Henri, Luca Bucciantini, Federico Lavorenti, Gaetan Wattieaux, and Francesco Califano

Mutual impedance experiments are active electric instruments that provide in situ diagnostic in space plasmas, such as the plasma density and electron temperature. The instrumental technique is based on the coupling between electric antennas embedded in the plasma, and characterizes the local properties of the plasma dielectric. 

Different versions of mutual impedance instruments are present onboard past and future planetary missions, such as Rosetta, BepiColombo, JUICE, and Comet Interceptor. Recently, the interest of the scientific community is shifting from large satellite platforms with single-point measurements concepts to small satellite platforms, to enable multipoint measurements for the spatial mappings of planetary outer environments. Therefore, instruments previously designed for large platforms are now miniaturized and adapted to small satellites. In this context, instrumental efforts are devoted to adapting mutual impedance experiments to small satellites, such as in the case of the CIRCUS CubeSat or the SPEED SmallSat missions projects. 

Current state-of-the-art quantitative instrumental models of mutual impedance experiments are based on the assumption of an unmagnetized plasma. However, for planetary environments within which the magnetic field is not negligible, such as intrinsic planetary magnetospheres (e.g. Mercury, Ganymede) significant modifications of mutual impedance measurements are expected. 

The goal of this work is twofold: (i) support the preparation of mutual impedance instruments for small satellites and (ii) extend current mutual impedance instrumental models to take into account the effects of the magnetic field on the plasma diagnostic. 

This investigation is performed by combining two complementary approaches. First, numerical simulations are used to quantify the impact of the plasma magnetization on the mutual impedance measurements and, therefore, improve its diagnostic. In particular, we have developed and validated a new instrumental model, based on the numerical calculation of the electric potential emitted by an electric antenna in a magnetized, homogeneous, collisionless, Maxwellian plasma. This new instrumental model is used to compute synthetic mutual impedance spectra and assess the impact of electron magnetization on the instrumental response. Using this new model, we provide diagnostics for the plasma density, electron temperature, and magnetic field amplitude. Second, laboratory experiments are used to test and validate our numerical model. We use the controlled plasma environment of the PEPSO plasma chamber at LPC2E laboratory in Orléans. This plasma chamber offers the possibility to test the performances of space plasma instruments and CubeSats in realistic planetary ionospheric conditions. A model of CubeSat is present inside the plasma chamber, and is equipped with a set of electric antennas that are used to perform mutual impedance measurements in the same configuration as a CubeSat. The measurements obtained by this setup are compared with the instrumental model, to validate the plasma diagnostic of the instrument prototype on a CubeSat. 

How to cite: Dazzi, P., Henri, P., Bucciantini, L., Lavorenti, F., Wattieaux, G., and Califano, F.: Mutual impedance experiments as a diagnostic for magnetized space plasmas, Europlanet Science Congress 2022, Granada, Spain, 18–23 Sep 2022, EPSC2022-1091, https://doi.org/10.5194/epsc2022-1091, 2022.