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Ices and Organics in the protoplanetary disk are processed to greater or lesser extent depending on
their location in the disk, and whether or not they circulate vertically above the plane as the star is
beginning to emit light and charged particles
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Space weathering and other physical processes related to the size and temperature of the TNOs
play a significant role in shaping their surfaces



What we know about TNOs

Known populations of solar system objects, 1980-2019
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TNOs : Orbital distribution

Dynamical classifications

Scattering

Definition: TNO whose 2 Neptune can currently alter significantly on timescales <1 Gyr; typically ¢ <
38 AU (e.g., Figure 3)

Interpretation: Likely a decaying remnant of a much larger primordial scattering population (see
Section 4.2.1)

Resonant

Definition: TNO in a mean-motion resonance with Neptune (e.g., Figure 2)

Interpretation: The abundant resonant TNOs were likely captured during the epoch of giant planet

migration (see Sections 4.2.2 and 5.1)

Detached

Definition: Nonresonant TNO with 2 > 47.4 AU and ¢ > 0.24 that is not scattering today (e.g., Figure 3)

Interpretation: The formation mechanism(s) of this population remains an area of active research (see

Sections 4.2.4 and 5.2)

Classical

Definition: A TNO that falls into none of the above categories. Divided into subcategories:

2

Main Belt: a between the 3:2 and 2:1 resonances (39.4 < 2 < 47.7 AUj e.g., Figure 5)

Interpretation: Observed to have a bimodal 7 distribution; likely a combination of TNOs that formed in

place and others implanted from elsewhere (see Sections 4.1 and 4.2.3)

Inner Belt: a between Neptune and the 3:2 resonance (30.1 < 2 < 39.4 AU)

Interpretation: Observed to only have a hot population (see below); either a dynamically excited remnant

of the original planetesimal disk or an implanted population

Outer Belt: a beyond the 2:1 resonance (¢ > 47.4 AU) and ¢ < 0.24

Interpretation: Only a few known. Origin unclear.

Cold versus hot popu

lations

Cold population

Observed concentration of low-i (ige. < 4 deg), low-¢ main-belt TNOs from # = 42.5-47.5 AU; likely
formed beyond 30 AU and survived in place with only minor ¢/i perturbations and collisional evolution

(see Section 4.1)

Hot populations

TNOs with large ¢ and/or i orbits (existing in all dynamical classes); likely formed at# < 30 AU and

scattered out to current locations, with the current population a small remnant of the initially scattered

population (see Section 4.2)
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How TNOs were formed?

Formation Era
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How TNOs were formed?

Formation Era
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TNOs: Spectroscopy
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Visible

~100 TNOs
97% of the visible spectra are featureless

Pinilla-alonso et al 2008
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NIR
~30TNOs
~50% has evidence of water ices
~90% has no detected feature of other
ices

Baruccietal.2011



TNOs : Surface Characterization
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IRAC / Spitzer

What we know about TNOs?

Methane Ick

- TNOs can show a wide diversity of surface properties, ‘ Corbon Dioxide
which is probably related to their formation and evolution

- Dueto their faintness, current data is not diagnostic of
their compositions

Nitrogen Ice

- Atmospheric absorptions prevent spectroscopic
observations of TNOs at the most diagnostic wavelengths
of their compositions
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Where is JWST? @
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Standard Imaging
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Webb’s 1st year in the Solar System

e Doubled the number of Solar System proposals requests for Cycle 1 vs. HST

e Cycle 1GOcallhad 1173 proposals submitted and 286 selected i.e. 24%
e SoSys 70 proposals (6%) and had 22 selected (31%) of which 6% total time

asked

e ERS+GTO + GO: 7% of time allocated so SoSys including

e 1ERS
e 5archival programs
o 1LP

DiSCo-TNOs: Discovering the

Composition of the Trans- ) S

Neptunian Objects, lcy Embryos Pl: Noemi Pinilla-Alonso 12 98.2 NIRSpec/IFU GO
for Planet Formation




Large program (98.2 h) that will observe 59 TNOs with
JWST NIRSpec at wavelengths 1-5 microns

Targets contain representatives of all TNOs dynamical
classes, including centaurs

Observations will start on September 2022, and end on
August 2023

Team:
- Pl: Noemi Pinilla Alonso
- 15researchers
- 8different countries
- 1 Post-doc
- 2 Ph.D Students



Scattering (9)
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What can we see?

CH-rich Organics
N-rich Organics
Sedna-type Organics
—— Pholus Water, Organics and Methanol

Normalized Reflectance
Normalized Reflectance

CH30H

H20 * CH3OH

3 35 40
Wavelength (um) Wavelength (um)

NIRSpec data will allow for the detection of several ices, such as Water, Methane, Methanol, Ethane,
Ammoniated ices, CO2, CO, and else



What can we see?

NIRSpec data will allow to investigate which are the reddening agents: Silicates or Organics?






Handle spectra (trim, mask
region, clean, rebin) , taxonomic
classification, slopes,

Available at:
https://github.com/cana-asteroids/c
ana

HDF5 Database of Optical
Constants.

- lces

- Silicates

- Organics

- Misc

Available at:
https://github.com/cana-asteroids/s
doc

CATUABA

Likelihood

Inference method using
reflectance models on
and for the

Available at:
https://github.com/cana-asteroids/c

atuaba
* private repository



Modeling TNO's surface composition

- Generative model: Shkuratov 1999
- Inputs: Optical Constants, Fractions, Grains sizes
- Porosity fixed at 0.5

- Inference with Bayesian statistics

- Fractions prior assumes a Dirichlet Distribution
- Grainsizes prior assumes an Uniform Distribution

- Sampling algorithm uses a Nested Sampling technique with the dynesty python package



Advantages of the modeling technique

- Slice sampling of the parameters
space is efficient in navigating
fractional prior

- Nested sampling allows to calculates
the evidence

- Technique allows to used model
comparison and selection metrics : 0.2 0.4 0.6 0.8
Fraction of Endmember




Optical Constant

Reflectance

wat_6
wat_5
oli_0
pyr_3
met_0
wat_4
wat_2
mol_0
cod_1
car_0

1
model5

Model was able to retrieve the correct
inputs of the synthetic spectra.

AIC revealed which ice was used to create
the synthetic spectra

Materials Optical Constants Running Parameters
Carbon car_0
Carbon dioxide cod_1
Methanol mol_0 .
. sampler = rslice
Amorphous Water wat_2 81000
Crystalline Water wat_4 = W_C ~ -
Mothane miet 0 grain sizes range= 5-30 p
Pyroxene pyr-3
Olivine oli.0
Carbon car 0
Carbon dioxide cod_1
Methanol mol 0 X
. sampler = rslice
Amorphous Water wat_2 i
K nlive = 1000
Crystalline Water wat_4 5 5.300
—Jp- grain sizes range= 5-
Methane met_0 8 8 #
Pyroxene pyr-3
Olivine oli_0
Carbon car_0
Carbon dioxide cod-1
Methanol mol_0 ) I
—Jp sampler = slice
Amorphous Water wat_2 1, L ¢
. nlive = 1000
Crystalline Water wat._4 L -
Methane e grain sizes range= 5-30 p
Pyroxene pyr-3
Olivine oli.0
Carbon car_0
Carbon dioxide cod_1
Methanol mol 0 .
Amorphous Water wat_2 HEple =anlice
c o —Jp nlive = 8000
Crystalline Water wat_4 L. &
Methane B0 grain sizes range= 5-30 p
Pyroxene pyr-3
Olivine oli_0
Carbon car_0
Carbon dioxide cod-1
Methanol mol 0 ) i
sampler = rslice
Amorphous Water wat_5 " 5
. nlive = 1000
Crystalline Water wat_6 . .
Mot L grain sizes range= 5-30 p
ethane met_|
Pyroxene pyr-3
Olivine oli_-0




Perspectives

- First datawill arrive in the last week of September or beginning of October

- Status of the tools
- Pipeline for the data reduction ¥4

- Optical Constants database *#
- Band analysis *W#
- Compositional Modeling * ¥

- DiSCo-TNOs will for obtain high SNR data of 59 TNOs within the next year at the
- This data will finally reveal the surface composition of TNOs, allowing for
the detection and characterization of several ices, organics and silicates
that have been proposed to exist on their surfaces, and unveil their
formation and evolutionary processes




Gracias!
Thank you!

Obrigado!



