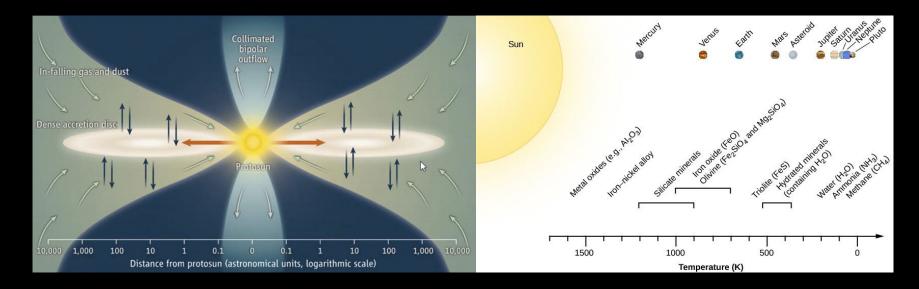
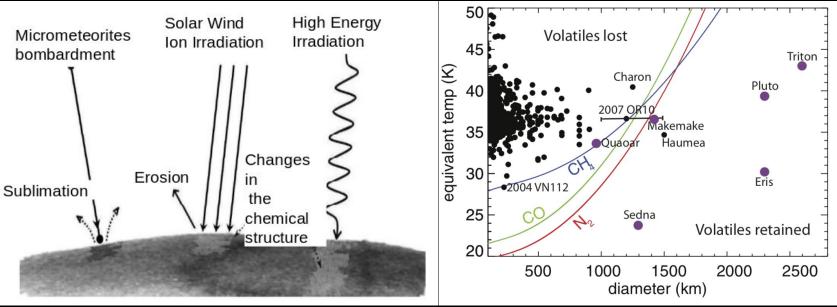


SOUTHER SURFACE COMPOSITION


1

M. De Prá, N. Pinilla-Alonso, A. C. Souza Feliciano, C. Schambeau, B. Harvison, J. Emery, D. Cruikshank, Y. Pendleton, B. Holler, J. Stansberry, V. Lorenzi, T. Muller, A. Guilbert-Lepoutre, N. Peixinho, M. Bannister, and R. Brunetto


Fossils of the Solar System formation

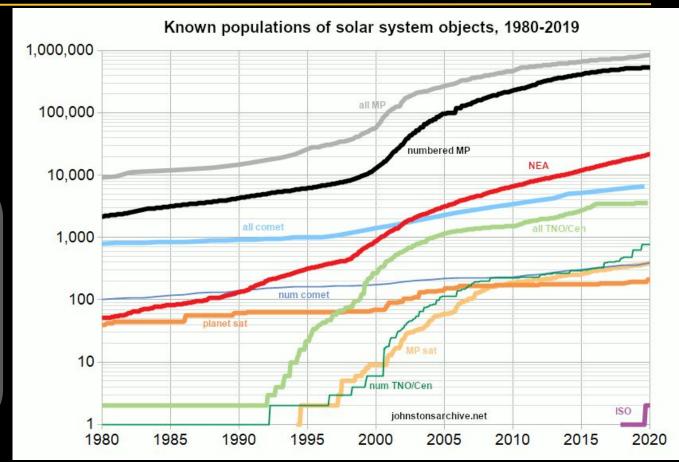
Ices and Organics in the protoplanetary disk are processed to greater or lesser extent depending on their location in the disk, and whether or not they circulate vertically above the plane as the star is beginning to emit light and charged particles

Volatiles loss and Surface processing

Space weathering and other physical processes related to the size and temperature of the TNOs play a significant role in shaping their surfaces

Schaller & Brown 2009

What we know about TNOs


In 1992 Luu & Jewitt:

- 15760 Albion

Currently:

- ~2500 TNOs
- ~1085 Centaurs

Size range: tens of km to 2000 km. (smaller objects is an observational bias)

Disco

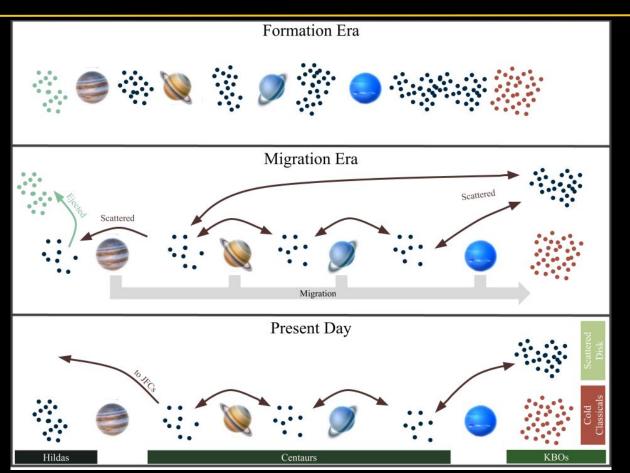
TNOs : Orbital distribution

			T.	SCORAM COMPANY	
Т	T		1		
7:4 5:3 3:2	2:1	3:1 5:2	7:2 	9:2	5:1
1	12	1.1	•		
			· · ·	L.	_
•	• 1				
40	50	60	70	80	90
40	50	60	70	80 • Classica • • Resona	il nt
40	50	60	70	80 Classica Resona Detach	nt ed
40	50	60	70	80 • Classica • • Resona	nt ed
40		60	70	80 Classica Resona Detach	nt . ed

Semimajor axis a (AU)

50 - 1

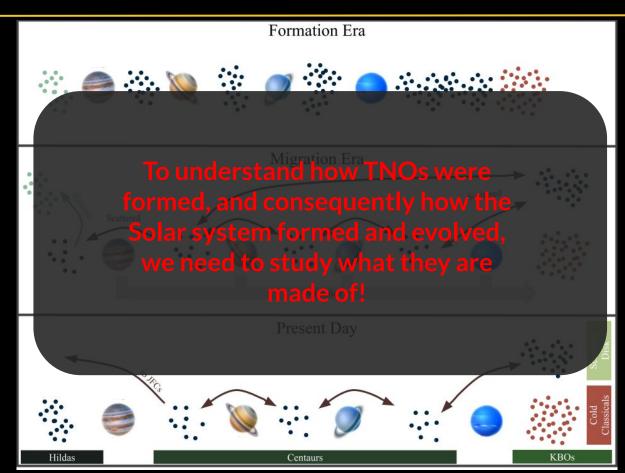
4:3


Perihelion q (AU)

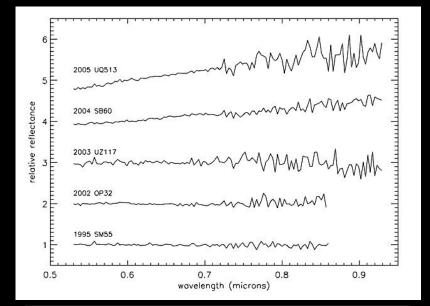
. ii

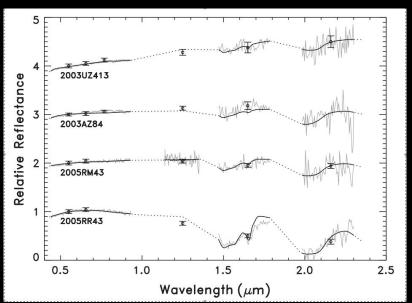
	Dynamical classifications	а
Scattering	Definition: TNO whose <i>a</i> Neptune can currently alter significantly on timescales $\ll 1$ Gyr; typically $q \lesssim$ 38 AU (e.g., Figure 3)	
	Interpretation: Likely a decaying remnant of a much larger primordial scattering population (see Section 4.2.1)	(NN)
Resonant	Definition: TNO in a mean-motion resonance with Neptune (e.g., Figure 2)	bu
	Interpretation: The abundant resonant TNOs were likely captured during the epoch of giant planet migration (see Sections 4.2.2 and 5.1)	Perihelion q (AU)
Detached	Definition: Nonresonant TNO with $a > 47.4$ AU and $e > 0.24$ that is not scattering today (e.g., Figure 3)	Per
	Interpretation: The formation mechanism(s) of this population remains an area of active research (see Sections 4.2.4 and 5.2)	_
Classical	Definition: A TNO that falls into none of the above categories. Divided into subcategories:	
	Main Belt: a between the 3:2 and 2:1 resonances (39.4 < a < 47.7 AU; e.g., Figure 5)	
	Interpretation: Observed to have a bimodal i distribution; likely a combination of TNOs that formed in	1
	place and others implanted from elsewhere (see Sections 4.1 and 4.2.3)	
	Inner Belt: a between Neptune and the 3:2 resonance $(30.1 < a < 39.4 \text{ AU})$	
	Interpretation: Observed to only have a hot population (see below); either a dynamically excited remnant of the original planetesimal disk or an implanted population	nclination i (deg)
	<i>Outer Belt: a</i> beyond the 2:1 resonance ($a > 47.4$ AU) and $e < 0.24$	'n
	Interpretation: Only a few known. Origin unclear.	tio
Cold versus hot po	pulations	ina
Cold population	Observed concentration of low- <i>i</i> ($i_{\text{free}} < 4 \text{ deg}$), low- <i>e</i> main-belt TNOs from $a = 42.5-47.5$ AU; likely formed beyond 30 AU and survived in place with only minor <i>e/i</i> perturbations and collisional evolution (see Section 4.1)	Incl
Hot populations	TNOs with large <i>e</i> and/or <i>i</i> orbits (existing in all dynamical classes); likely formed at $a < 30$ AU and scattered out to current locations, with the current population a small remnant of the initially scattered population (see Section 4.2)	

Gladman & Volk 2021


How TNOs were formed?

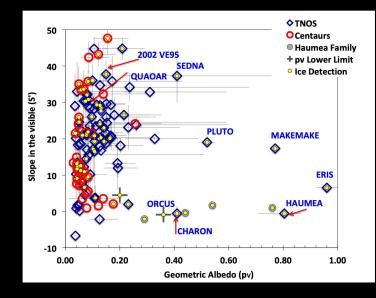
Disco


How TNOs were formed?

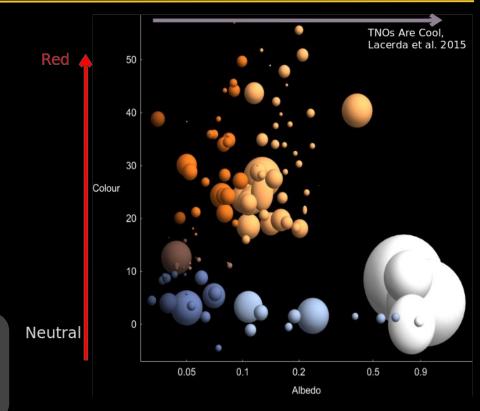


TNOs: Spectroscopy

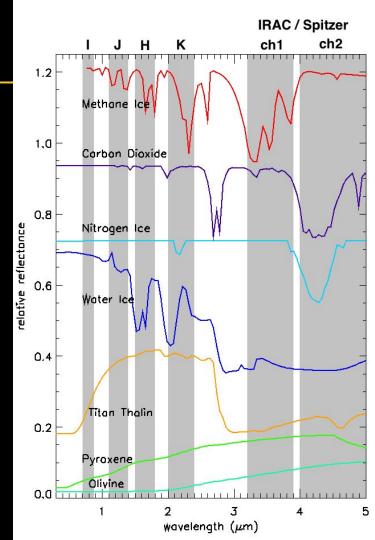
- Visible
 - ~100 TNOs
 - 97% of the visible spectra are featureless


- NIR
- ~30 TNOs
- ~50% has evidence of water ices
- ~90% has no detected feature of other ices

Pinilla-alonso et al 2008

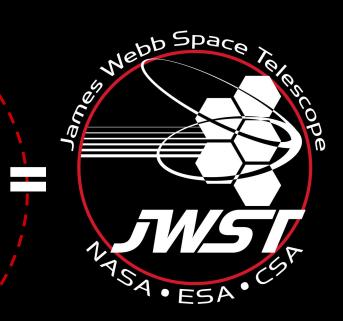

Barucci et al. 2011

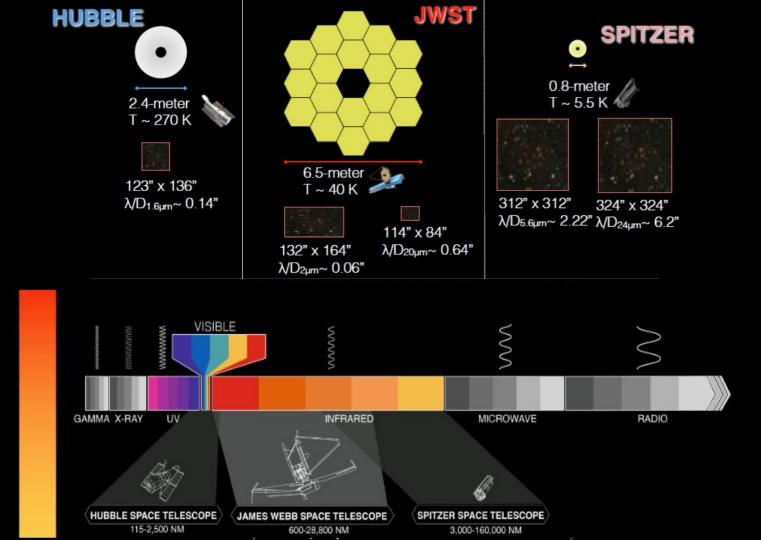
TNOs : Surface Characterization



- ~170 TNOs have size and albedo determined
- No correlation D, pv & visible color
 - Dark ≠ red
 - Dark ≠ neutral
 - Small ≠ red or blue

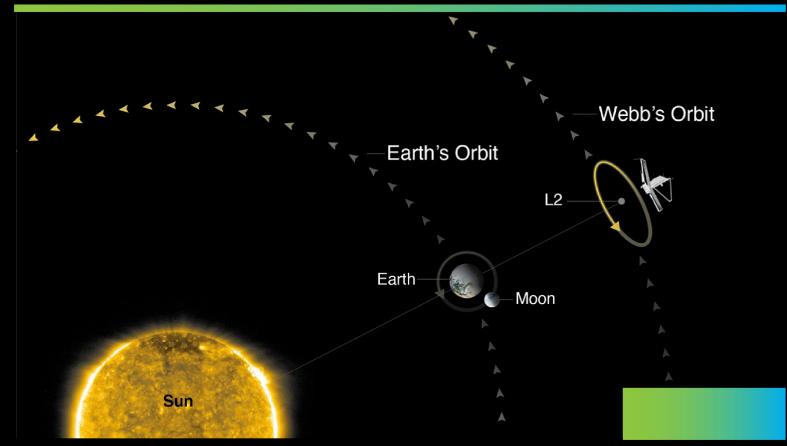
What we know about TNOs?

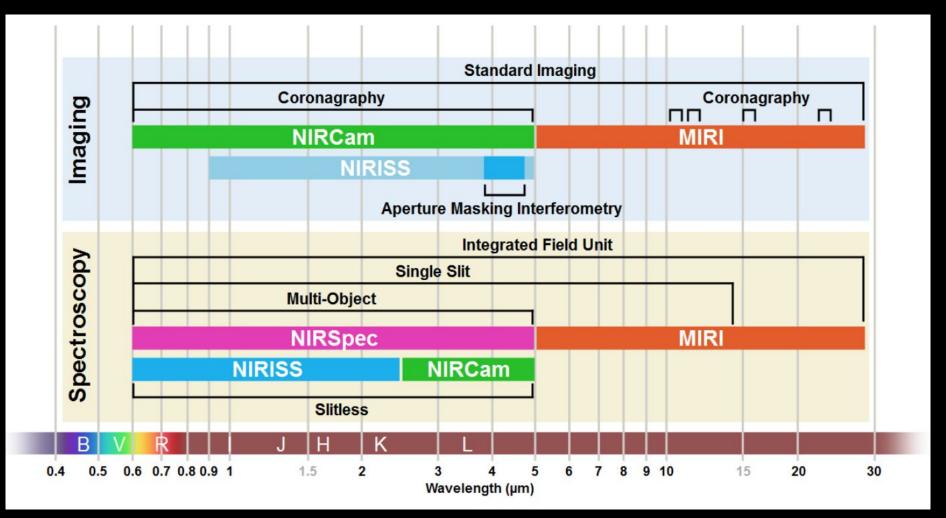

- TNOs can show a wide diversity of surface properties, which is probably related to their formation and evolution
- Due to their faintness, current data is not diagnostic of their compositions
- Atmospheric absorptions prevent spectroscopic observations of TNOs at the most diagnostic wavelengths of their compositions

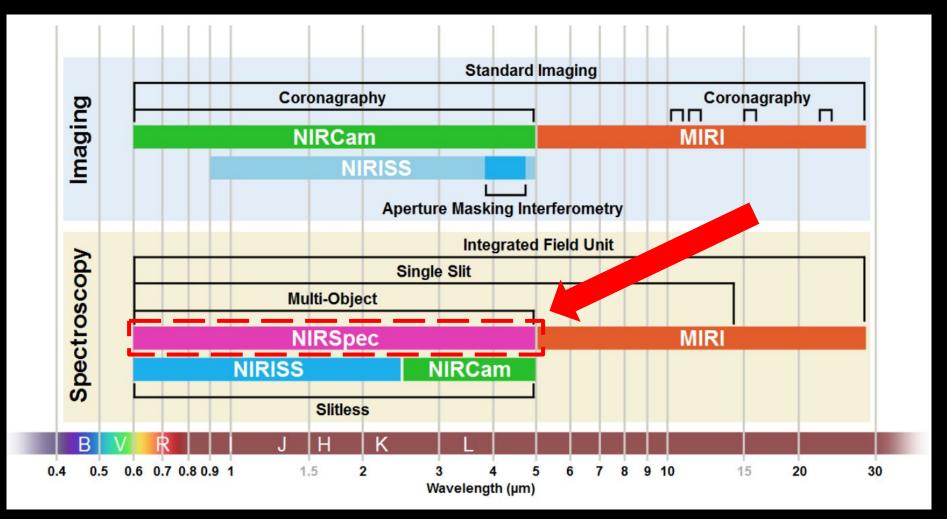


More Power! Better Wavelength Coverage! Better methods to analyse the data!

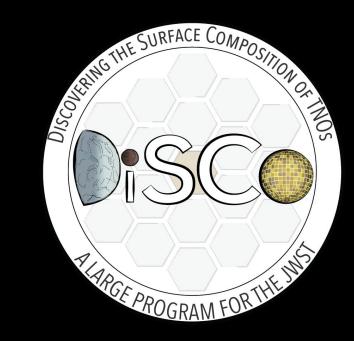
More Power!


Better Wavelength Coverage!



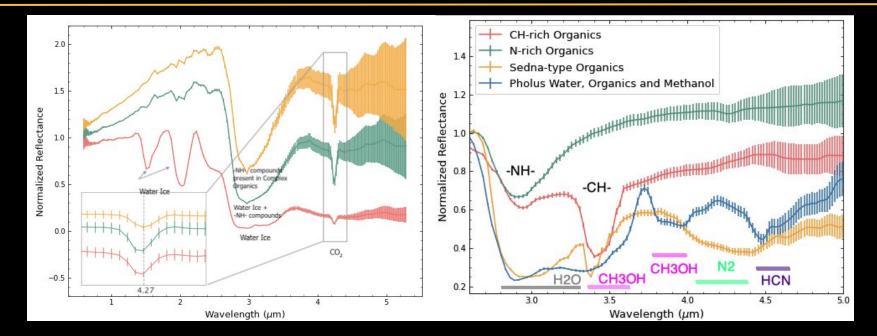


Where is JWST?



Webb's 1st year in the Solar System

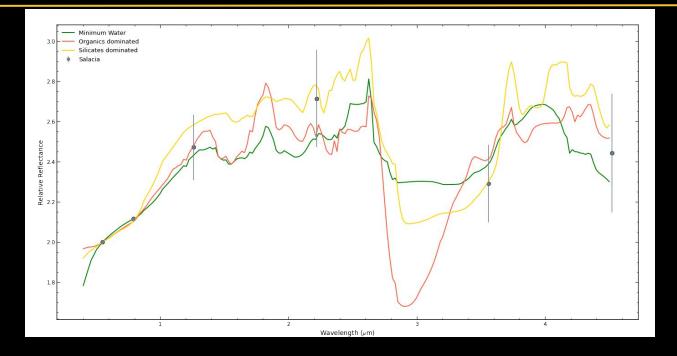
- Doubled the number of Solar System proposals requests for Cycle 1 vs. HST
- Cycle 1 GO call had 1173 proposals submitted and 286 selected i.e. 24%
 - SoSys 70 proposals (6%) and had 22 selected (31%) of which 6% total time asked
- ERS + GTO + GO: 7% of time allocated so SoSys including
 - 1 ERS
 - 5 archival programs
 - 1 L P


2418 DiSCo-TNOs: Discovering the Composition of the Trans- Neptunian Objects, Icy Embryos for Planet Formation	PI: Noemi Pinilla-Alonso	12	98.2	NIRSpec/IFU	GO
---	---------------------------------	----	------	-------------	----

- Large program (98.2 h) that will observe 59 TNOs with JWST NIRSpec at wavelengths 1-5 microns
- Targets contain representatives of all TNOs dynamical classes, including centaurs
- Observations will start on September 2022, and end on August 2023
- Team:
 - PI: Noemi Pinilla Alonso
 - 15 researchers
 - 8 different countries
 - 1 Post-doc
 - 2 Ph.D Students

Scattering (9)	<u>Resonant (10)</u>	Detached (9)
2014 LV28 2014 YF50 1999 OX3 2005 QU182 2010 VW11	Mors-Somnus 2002 XV93 2004 EW95 1999 DE9 Huya	2003 FY128 2005 TB190 G!kun homdima 2004 XA192 2004 PG115
1996 TL66 Typhon 2001 FZ173 2001 FP185	2007 JF43 2003 UZ413 Dziewanna Lempo 2002 TC302	2007 OC 10 2008 NW4 2010 ET 65 2010 ER 65 Extreme TNOs (4)
<u>Centaur (9)</u>	Cold Classicals (9)	2010 VZ98 2005 PU21 2015 SO20 2012 DR30
2002 KY14 Okyrhoe 2003 WL7	2000 OK67 2001 QY297 1998 SN165	2003 UR292 2004 TY364 2004 UX10
Thereus 2007 RW10 2003 UY413	2003 GH55 Kagara 1995 TL8	2005 RN43 Varda 2004 PF115
2003 01413 2013 LU28 2010 KR59 2005 CC79	2001 QD298 Borasisi Sila-Nunam	2004 PF113 2003 UZ117 2004 NT33 2002 UX25

What can we see?



Disc

NIRSpec data will allow for the detection of several ices, such as Water, Methane, Methanol, Ethane, Ammoniated ices, CO2, CO, and else

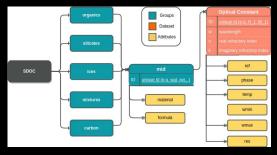
What can we see?

NIRSpec data will allow to investigate which are the reddening agents: Silicates or Organics?

More Power!

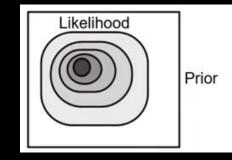
٠

Better Wavelength Coverage!


Better methods to analyse the data!

Handle spectra (trim, mask region, clean, rebin), taxonomic classification, slopes, reflectance models (Shkuratov).

Available at: https://github.com/cana-asteroids/c ana


HDF5 Database of Optical Constants.

- Ices
- Silicates
- Organics
- Misc

Available at:

https://github.com/cana-asteroids/s doc

CATUABA

Inference method using reflectance models on CANA and DYNESTY for the Nested Sampling.

Available at:

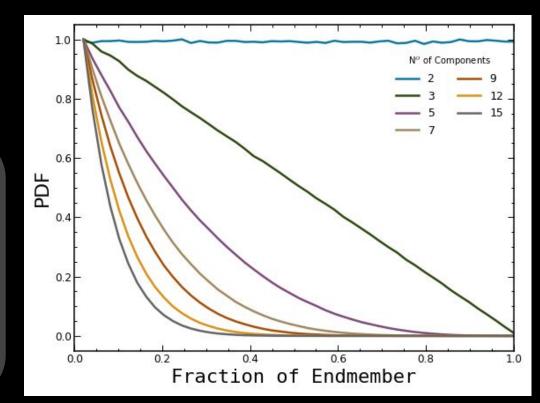
https://github.com/cana-asteroids/c atuaba * private repository

Modeling TNO's surface composition

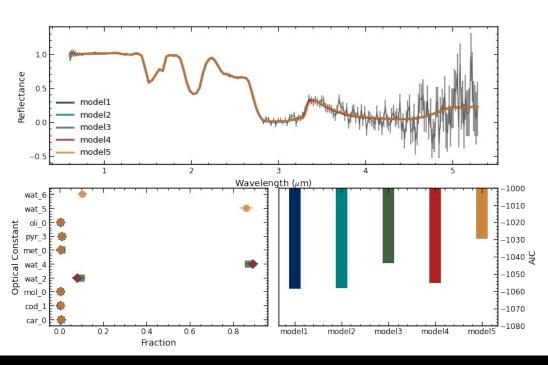
- Generative model: Shkuratov 1999
 - Inputs: Optical Constants, Fractions, Grains sizes
 - Porosity fixed at 0.5
- Inference with Bayesian statistics

$$p(heta|D) = rac{1}{Z} p(D| heta) p(heta)$$

Posterior


nce Likelihood

- Fractions prior assumes a Dirichlet Distribution
- Grain sizes prior assumes an Uniform Distribution
- Sampling algorithm uses a Nested Sampling technique with the dynesty python package


DiSC

Advantages of the modeling technique

- Slice sampling of the parameters space is efficient in navigating fractional prior
- Nested sampling allows to calculates the evidence
- Technique allows to used model comparison and selection metrics

Disco

- Model was able to retrieve the correct inputs of the synthetic spectra.
- AIC revealed which ice was used to create the synthetic spectra

Model	Materials	Optical Constants	Running Parameters
	Carbon	car_0	
Model 1	Carbon dioxide	cod_1	
	Methanol	mol_0	sampler = rslice
	Amorphous Water	wat_2	sampler = rslice nlive = 1000
	Crystalline Water	wat_4	
	Methane	met_0	grain sizes range = 5-30 μ
	Pyroxene	pyr_3	
	Olivine	oli_0	
	Carbon	car_0	
	Carbon dioxide	cod_1	
	Methanol	mol_0	
Model 2	Amorphous Water	wat_2	sampler $=$ rslice
model 2	Crystalline Water	wat_4	nlive = 1000
	Methane	met_0	\longrightarrow grain sizes range= 5-300 μ
	Pyroxene	pyr_3	
	Olivine	oli_0	
	Carbon	car_0	
	Carbon dioxide	cod_1	
	Methanol	mol_0	lli
Model 3	Amorphous Water	wat_2	sampler = slice nlive = 1000
Model 5	Crystalline Water	wat_4	
	Methane	met_0	grain sizes range = 5-30 μ
	Pyroxene	pyr_3	
	Olivine	oli_0	
	Carbon	car_0	
	Carbon dioxide	cod_1	
	Methanol	mol_0	sampler = rslice
Model 4	Amorphous Wate	wat_2	sampler = rsice \rightarrow nlive = 8000
model 4	Crystalline Water	wat_4	grain sizes range = 5-30 μ
	Methane	met_0	gram sizes range= 5-50 μ
	Pyroxene	pyr_3	
	Olivine	oli_0	
	Carbon	car_0	
	Carbon dioxide	cod_1	
	Methanol	mol_0	sampler = rslice
Model 5	Amorphous Water	wat_5	sampler = rslice nlive = 1000
model 9	Crystalline Water	wat_6	
	Methane	met_0	grain sizes range = 5-30 μ
	Pyroxene	pyr_3	
	Olivine	oli_0	

Perspectives

- First data will arrive in the last week of September or beginning of October
- Status of the tools
 - Pipeline for the data reduction 🗸
 - Optical Constants database * 🗸
 - Band analysis * 🗸
 - Compositional Modeling * 🗸
- DiSCo-TNOs will for obtain high SNR data of 59 TNOs within the next year at the
 - This data will finally reveal the surface composition of TNOs, allowing for the detection and characterization of several ices, organics and silicates that have been proposed to exist on their surfaces, and unveil their formation and evolutionary processes

Gracias!

Thank you!

Obrigado!