Isotopic ratios in HCN and HC₃N in Titan's atmosphere derived from Cassini/CIRS observations

S. Vinatier¹, C. Mathé¹, M. Daugeron¹, B. Bézard¹, A. Jolly², T. Gautier³

⁽¹⁾LESIA, Observatoire de Paris, France
⁽²⁾LISA, Université Paris-Est, Créteil, France
⁽³⁾LATMOS, Observatoire de Versailles St-Quentin-en-Yvelines, France

EPSC 2022, Grenade

Introduction

Wealth of molecules are formed from the dissociation of N₂ and CH₄ by photons and magnetospheric e- in the upper atmosphere of Titan.

Isotopic ratios in the produced photochemical species probe atmospheric chemical or photochemical fractionation processes, which can enrich or deplete isotopologues.

Goal: we derive the ¹⁴N/¹⁵N and ¹²C/¹³C isotopic ratios in HCN and HC₃N using all Cassini/CIRS data. -> derive precise isotopic ratio values.

-> infer potential spatially or seasonally variations following seasonal changes of the global dynamics?

Cassini/CIRS observations

Integrating mode: résolution spectrale = 0.5 cm⁻¹

We use the entire CIRS limb dataset acquired at 0.5 cm⁻¹ resolution from 2005 to 2017.

Method

We use an inversion algorithm and radiative transfer code to derive the HCN and HC₃N isotopologues abundances.

Method

We use an inversion algorithm and radiative transfer code to derive the HCN and HC₃N isotopologues abundances.

we assume no vertical variation of the isotopic ratios in the 200-500 km altitude range.

- we use the thermal profiles and the HCN, HC_3N , CO_2 , C_2H_2 , CH_3C_2H , C_4H_2 , C_6H_6 volume mixing ratios profiles from Mathé et al. (2020).
- 53 latitudes studied for HCN.
- 13 polar latitudes studied for HC₃N.

Mathé et al. (2020)

¹⁴ N/ ¹⁵ N in HCN previous measurements				
Disk-averaged				
65 ± 6.5	IRAM	Marten et al. (2002)		
72 ± 9	SMA	Gurwell et al. (2004) A		
94 ± 13	SMA	Gurwell et al. (2004) B		
65 ± 12	SMA	Gurwell et al. (2011)		
76 ± 6	Herschel/SPIRE	Courtin et al. (2011)		
72.2 ± 2.2	ALMA	Molter et al. (2016)		
- Spatially	resolved			
56 ± 8	Cassini/CIRS	Vinatier et al. (2007)		
	15°S & 80°N in 200	5		

 $^{14}N/^{15}N \text{ dans } N_2 = 167.6 \pm 0.6$

In situ measurements by Huygens/GCMS, *Niemann et al. (2010)*

HCN is enriched in ¹⁵N by a factor \sim 2.5 compared to N₂.

Photochemical model of *Vuitton et al. (2019)* -> ¹⁴N/¹⁵N in HCN increases with altitude

HCN is enriched in ¹⁵N by a factor ~ 2.5 compared to N₂. fractionation process in the ¹⁴N¹⁴N and ¹⁴N¹⁵N photodissociation => formation of HC¹⁵N mostly below 800 km.

Photochemical model of *Vuitton et al. (2019)* -> ¹⁴N/¹⁵N in HCN increases with altitude

HCN is enriched in ¹⁵N by a factor ~2.5 compared to N₂. fractionation process in the ¹⁴N¹⁴N and ¹⁴N¹⁵N photodissociation => formation of HC¹⁵N mostly below 800 km.

Vinatier et al. (2020)

¹² C/ ¹³ C in HCN previous measurements:			
- Disk-averaged			
108 ± 20	SMA	Gurwell et al. (2004) A	
132 ± 25	SMA	Gurwell et al. (2004) D	
96 ± 13	Herschel/SPIRE	Courtin et al. (2011)	
66 ± 35	Herschel/PACS	Rengel et al. (2014)	
89.8 ± 2.8	ALMA	Molter et al. (2016)	
- Spatially resolved			
89 ± 20 at 15°S Cassini/CIBS 2005 Vinaties et al. (2007)			
68 ± 20 at 8	33°N _		

¹²C/¹³C in CH₄ = 91.1 ± 1.4, in situ GCMS (*Niemann et al., 2010*)

 $^{12}C/^{13}C$ is not considered in photochemical models as no fractionation is expected.

 \Rightarrow Unknown fractionation process that increases ¹²C and/or reduces ¹³C in HCN ?

Possible $\sqrt{}$ of ¹²C/¹³C from southern hemisphere to northern hemisphere.

Previous ¹⁴N/¹⁵N measurement in HC₃N Disk-averaged: ${}^{14}N/{}^{15}N = 67 \pm 14$ ALMA, Cordiner et al. (2018)

In agreement with ALMA disk-averaged observations.

 $^{14}N/^{15}N$ is smaller in HC₃N than in HCN.

Previous ¹⁴N/¹⁵N measurement in HC₃N Disk-averaged: ${}^{14}N/{}^{15}N = 67 \pm 14$ ALMA, Cordiner et al. (2018)

In agreement with ALMA disk-averaged observations.

 $^{14}N/^{15}N$ is smaller in HC₃N than in HCN.

In agreement with photochemical model predictions at 200 km (Vuitton et al., 2019).

Vuitton et al. (2019)

Previous ¹⁴N/¹⁵N measurement in HC₃N Disk-averaged: ${}^{14}N/{}^{15}N = 67 \pm 14$ ALMA, Cordiner et al. (2018)

In agreement with ALMA disk-averaged observations.

 $^{14}N/^{15}N$ is smaller in HC₃N than in HCN.

In agreement with photochemical model predictions at 200 km (Vuitton et al., 2019).

Possible ¹⁴N/¹⁵N depletion in the Southern polar vortex since 2015.

-> surprising as increase of ¹⁴N/¹⁵N would be expected from subsidence on increasingwith-height ¹⁴N/¹⁵N profile.

Vuitton et al. (2019)

Previous ¹³C/¹²C measurement in HC_3N Spatially resolved: ¹²C/¹³C = 79 ± 17 Cassini/CIRS in 2006-2007, *Jennings et al. (2008)*

Agreement with previous CIRS results.

No latitudinal nor temporal variations seems to be observed.

 $^{12}C/^{13}C$ in HC₃N is about twice smaller than in HCN.

¹³C isotope is currently not taken into account in photochemical models.
=> could help to identify some fractionation process in the nitrile photochemistry.

Conclusions

We derived the ¹⁴N/¹⁵N and ¹²C/¹³C isotopic ratios in HCN and HC₃N using the entire Cassini/CIRS dataset.

¹⁴N/¹⁵N isotopic ratio

- in HCN : 68 ± 2

- in $HC_3N : 52 \pm 4$

-> fractionation process in the formation of both nitriles.

-> in agreement with photochemical model predictions (Vuitton et al. 2019, Dobrijevic et al. 2018) Possible latitudinal variations in the southern polar vortex in autumn.

¹²C/¹³C isotopic ratio

- in HCN : 115 ± 3

- in $HC_3N : 60 \pm 4$

Both nitriles show different ${}^{12}C/{}^{13}C$ ratios than in CH₄ (~90, and other hydrocarbons) => unknown fractionation process. Possible $\int of {}^{12}C/{}^{13}C$ from southern hemisphere to northern hemisphere. 1D photochemical model of Dobrijevic et al. (2016)

Important neutral pathways are in black. Important ionic pathways are in red. Detected molecules are in bold.

HC₃N latitudinal distribution in 2015

HC₃N is detected in the polar region with high SNR as it is enriched by the global dynamics subsidence.

 HC_3N mixing ratio in May 2015