

The static behaviour of tectonic aftershocks: From geometric to subdiffusion analysis

Arnaud Mignan

ETH, Institute of Geophysics, Zurich, Switzerland (arnaud.mignan@sed.ethz.ch)

The decay of aftershocks has recently been shown to follow a stretched exponential function instead of the Omori law (Mignan, Geophys. Res. Lett., 2015; Mignan, Seismol. Res. Lett., 2016). This triggers a complete re-investigation of aftershock statistics in Southern California and a new physical interpretation of these results: (1) After verifying the stretched exponential behaviour of aftershocks in time, I show that aftershocks follow a pure exponential in space and that there is no observed spatial diffusion with time. (2) I investigate the origin of aftershocks using geometric reductionism made possible by the Non-Critical Precursory Accelerating Seismicity Theory (N-C PAST) postulate, which states that spatial density switches from $\delta b0$ for background seismicity to δbp for activated events (such as foreshocks, induced seismicity and here aftershocks) when the static stress field $\sigma(r)$ exceeds the threshold $\sigma(rA^*) \propto \Delta \sigma^*$ with r the distance to source. The postulate explains the exponential spatial distribution (assuming that aftershocks fill a noisy fractal network within rA*) and aftershock production (assuming a constant stress drop) with K(M) = $\delta bp.V(M)$, V being the volume of a rounded cuboid centred on the fault of length $1 \propto \exp(\alpha M)$, and with radius rA*. Finally the observed stretching factor $\beta \approx 0.4$, characteristic of aftershock subdiffusion, is explained topologically from the fractal dimension $D \approx 1.5$.