Anatomy of sigma as suggested by a global dataset of digital acceleration waveforms and associated metadata

Carlo Cauzzi
Swiss Seismological Service (SED), ETH Zürich, Switzerland

The misfit of an empirical GMPE to the data used to derive it (σ_T) is considered as total uncertainty. σ_T is typically split into at least a between-event (also called inter-event), τ, and a within-event (or intra-event) uncertainty component, φ, in order to isolate event-specific and path-site specific aleatory variability (randomness). Removing the ergodic assumption used to develop GMPEs yields to replacing φ with φ_{SS}, the so-called single site within-event sigma, that can significantly reduce the predicted ground-motion variability and the resultant hazard at long return periods. Selectively presented in this contribution are investigations on the components of GMPE uncertainty based on a large dataset of worldwide digital records and their metadata. Our investigations are based on a calibration dataset comprising $\sim 2000 \times 2$ orthogonal horizontal accelerometer records with RRUP < 150km from 98 global earthquakes with $4.5 \leq MW \leq 7.9$. Emphasis is on understanding the variation of sigma and its components as a function of the vibration period and predictors given the choices adopted in terms of dataset composition, explanatory variables and functional forms.