How can we better quantify drought in a warming climate?

Ashish Sharma, Mamun Rashid, and Fiona Johnson
University of New South Wales, School of Civil and Environmental Engineering, Sydney, NSW, Australia
(a.sharma@unsw.edu.au)

A lot of attention has been focused on metrics for quantifying drought recently. A problem that has received lesser attention is the unsuitability of current metrics in quantifying drought in a changing climate due to the clear non-stationarity in potential and actual evapotranspiration well into the future (Asadi-Zarch et al, 2015). This talk argues for a new basis for simulating drought designed specifically for use with climate model simulations. Given the known uncertainty of climate model rainfall simulations, along with their inability to represent low-frequency variability attributes, the approach here adopts a predictive model for drought designed using selected atmospheric indicators. This model is based on a wavelet decomposition of relevant predictor variables to filter out less relevant frequencies and formulate a better characterisation of the drought metric chosen as response. Using simulations from a range of GCMs across Australia, we show here that this new method offers considerable advantages in representing drought compared to traditionally followed alternatives that rely on modelled rainfall instead.

Reference: