MULTI-SCALE STRUCTURE INVESTIGATIONS OF MAGNESIUM ALLOYS BY XAFS-CT

S. Yoshioka *1,2, M. Ishida¹, K. Yasuda¹, S. Matsumura^{1,2}, S. Kimura³, Y. Takeichi⁴, Y. Niwa⁴, & M. Kimura⁴

¹Faculty of Engineering, Kyushu University, Fukuoka 819-0395, Japan

²Research Center for Synchrotron Light Applications, Kyushu University, Kasuga, 816-8580, Japan

³Japan Synchrotron Radiation Research Institute (JASRI/SPring-8), Hyogo 679-5198, Japan

⁴Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK),

Tsukuba 305-0801, Japan

Keywords: XAFS-CT, Mg alloy, phase separation, local atomic arrangement

Summary: Magnesium based alloys in Mg-Zn-Gd system have many crystal structures and morphologies depending on aging temperatures and holding times. The local structures around Zn were investigated by x-ray absorption fine structure combined with x-ray computed tomography.

1. INTRODUCTION

Magnesium based alloys in Mg-Zn-Gd with long period stacking ordered (LPSO) structure have superior mechanical properties. The specific structure is formed by the aging procedure at high temperature (< 350 °C). Additionally, this system has many crystal structures and morphologies depending on aging temperatures and holding times [1, 2]. In this study, our final goal is to determine the local structure behaviors around Zn and Gd on precipitation process of LPSO phase from $Mg_{97}Zn_1Gd_2$ cast alloy. We adopt x-ray absorption fine structure (XAFS) method combined with x-ray computed tomography (X-CT).

2. EXPERIMENTAL METHOD

Alloy ingots of $Mg_{97}Zn_1Gd_2$ were prepared by high-frequency induction heating in an argon atmosphere. Solution treatment was carried out at 793 K for 2 h in air. The specimens were quenched in water at room temperature. The annealing procedure were carried out using with electric furnaces in air. XAFS-CT measurements were performed on undulator beamline 37XU of SPring-8, Japan. X-rays from an undulator were monochromatized by Si(111) double crystal monochromator. The beam size at sample positon is ~1 mm². Transmitted image sets for 3D tomographic reconstructions were acquired with 40 incident x-ray energy points around Zn K-edge for x-ray absorption near edge structure (XANES) spectra.

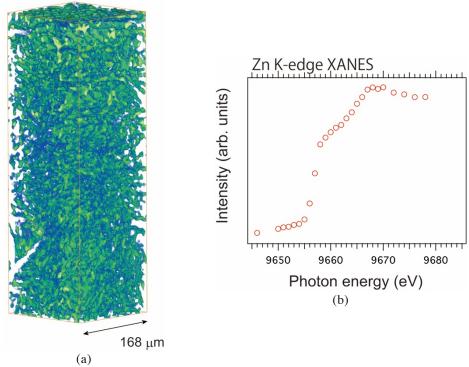

3. RESULTS

Figure 1 shows XAFS-CT results of the sample annealed at 480 °C for 24 hours. As shown in Fig. 1(a), the LPSO particles (colored green) with several 10 μ m were distributed in α -Mg phase (transparent). Moreover, fig. 1(b) shows the XANES spectrum, plotted the liner absorption coefficient of the LPSO region in the CT stack images. The fine structures of Zn K-edge spectrum were clearly detected. The XANES spectrum was different from that of the sample annealed at 300 °C for 10 hours.

References

- [1] M. Yamasaki, T. Anan, S. Yoshimoto, and Y. Kawamura, Scripta Materialia, 53, 799-803, 2005
- [2] M. Yamasaki, M. Sasaki, M. Nishijima, K. Hiraga, and Y. Kawamura, Acta Materialia, 55, 6798-6805, 2007

^{*} e-mail: syoshioka@nucl.kyushu-u.ac.jp

Figure 1: XAFS-CT of the sample annealed at 480 $^{\circ}$ C for 24 hours. (a) 3D rendered image. (b) Zn K-edge XANES.